NASA Technical Memorandum 100574

THE ENVIRONMENT FOR APPLICATION SOFTWARE
INTEGRATION AND EXECUTION (EASIE) VERSION 1.0
VOLUME II

PROGRAM INTEGRATION GUIDE

KENNIE H. JONES

DONALD P. RANDALL
SCOTT S. STALLCUP
LAWRENCE F. ROWELL

(DASA-TN-100574) TEE EMDVIECMPEM ECR o N89-13965
AEELICATICN SCFIWIBE INTEGRAT1CM AML
EXEGUTICN (EASIE), VERSICH 1.C. VCLUNE 2:

E5CGEEM INTEGFATICN GUILE (F2ZR) 121 Unclas
cscL 09B 63,61 (183409

DECEMBER 1988

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

PREFACE

The Environment for Application Software Integration and
Execution (EASIE) provides both a methodology and a set of
software utility oprograms to ease the task of coordinating
engineering design and analysis codes. The need for such
techniques and tools has stemned from the computer-aided design
and engineering activities within Langley Research Center's Space
Systems Division (SSD). In SSD, the Vehicle Analysis Branch
(VAB), with emphasis on advanced transportation systems, and the
Spacecraft Analysis Branch (SAB), with emphasis on advanced
spacecraft, share a common need to integrate many stand-alone
engineering analysis programs into coordinated, quick-turnaround,
user-friendly design systems. In particular, the most needed
capabilities ijnclude easy selection of application programs,
quick review and modification of program input/output data, and
logging of the actual steps that were executed during the
study. Although the application programs used by VAB and SAB
differ, the design methods used by their engineers are quite
similar, and great efficiency can be gained by providing a
computer environment that provides the capabilities mentioned
above.

FASIE is a user interface and set of utility programs which
supports rapid integration and execution of programs about @
central relational database. In general, the EASIE system

addresées the needs of four different classes of people who will

be involved in the development of an engineering design system.
Certain individuals may serve in more than one of these roles,
but the following terms will help to clarify several distinct
activities associated with the EASIE system.

The first classification represents the engineer/designer/
analyst, This group conducts the design Sstudy by executing
modeling and analysis programs and generating data required to
evaluate the design against its objectives. EASIE documentation
will refer to this group as EASIE system users or, more often, as
users. In general, these users are only interested in executing
programs already installed into an EASIE design system.

A second group aided by EASIE is identified as application
programmers., These programmers are responsihle for the
development and improvement of modeling and analysis programs
used 1in the engineering design process. They are the experts
with respect to particular application programs and can define
its input and output wvariables,. This must be done before
inclusion of that program with others into the integrated
system.

The third group is identified as program implementers since
their function is to provide an environment where all the
software tools work together with a minimum of effort, These
people will use information provided by the application
programmers and will install or modify the programs in an EASIE
system by creating appropriate data constructs in the datahase

and locating files where needed by the EASIF executive.

i1

The fourth classification is design team leader or design
manager. This 1is the individual or group responsible for
jdentifying parameters important to the design study and for
configuration management of the data as it is produced by the
design teanm, This design manager must have an overview of the
tbtal data requirements for the analysis process and must be
concerned foremost with the integrity of the data.

Wwith these terms defined, the four volumes of EASIE
documentation can be associated with the gréups most likely to
use them. Fach of the volumes addresses different aspects of the
support tools, and each is intended to be independent of the
others.

Volume I, EXECUTIVE OVERVIEW, provides information about the
functions, concepts, and historiﬁa\ development of EASIE and
should be read by anyone trying to determine if EASIE would be
beneficial to their work.

Volume 11, PROGRAM INTEGRATION GUIDE, describes the portion
of the EASIE tools supporting both the integration of»application
programs into a central database and the definition of the data
dictionary used during data review and modification. This volume
will be used primarily by the program implementer and the design
manager in their responsibilities for the actual installation of
appropriate programs into a fully-integrated design system,
However, the application programmer may also use tools described
in this volume to assist in the documentation of input/output

variables for the application program.

iii

Volume III, PROGRAM EXECUTION GUIDE, describes the portion
of the EASIE tools supporting the selection and execution of
application programs, building of menus, and editing of program
data. This volume will be of foremost importance to the users
who will perform design studies. In addition, the program
implementers will find the sections concerning the construction
of application-dependent procedures helpful. Finally this
document will also be used by the design manager for reviewing
data and design activities.

Volume IV, SYSTEM INSTALLATION AND MAINTENANCE GUIDE,
describes the procedure of loading the EASIE system onto a
computer. It also gives some insight into the hardware and
software dependencies of the EASIE code. This, most likely, will
be needed by the program implementer to familiarize himself with
the directory structure and location of the various EASIE
components. Although the design of EASIE is intended to reduce
the system dependencies, this version nevertheless reflects in
several ways the current implementation using the Relational
Information Management (RIM*) database management system and the

VAX/VMS* operating system.

* Trademark of Roeing Computer Services

* Trademark of the Digital Equipment Corporation

iv

Section

it

w W W W (2]
« s ® . .
NEEWN-=O W N = (=] (=] [=]

bbbl

o pp

(5,00 3, WE NS NS S A
O~NONBWN-O OO0~

e N R X K R R N -
s 6 8 8 8 8 w s s & @

—=~OO~NOVEWN-O

TABLE OF CONTENTS

Page
PREFACE...ccccaces R T EEE R R R R R R i
LIST OF FIGURES...cccccenwn cesecscsscecnsacse cecsssne vii
I"TRODUCTION......'..'... o o @ 8 3 e 08 s PRI B B R I R R 1
BACKGROU“D.I...........l'.O‘....O.........Q..A
THE EASIE TOOLS FOR DATABASE MANAGEMENT AND
PROGRAM INTEGRATION....cccceeccevn cesscsonsscccs cesessld

Parameter Versus Attribute......... tecssscscccsnacs 10
Integration Using The Conventional Approach....... 11
Integration Using EASIE...........................12

SIMPLE INTEGRATION EXAHPLE........................14
Constructing The SYSTEM LIBRARY.cveveoeccasscoseess1d

Defining The Data Dictionary.........- weosecesasesld
Defining The Template Libraryeeeeceecccsceccccacesns 17
Constructing The Database Schema..... ceesecsssnesee 20
Producing FORTRAN Routines For Input And Output
To/From The Database....ccccccacccvccns cecesscncss 21
Linking The Example Program....ccccecccceces |
Creating REVIEWER Input FileSeeeeoososoncaasaccnns .28
Executing The Example Program.....ccececece ceseesssdl
Concluding The Simple Example..ccecese teceseasessasdl
MORE COMPLEX EXAMPLE.....cceeccccccnccccncs cecoesedl
A Description Of The ProgramS....ccececcccccns R ¥
Defining The Relations..... teceseseesssssensssanese 38
pefining The Templates...... cessecsssssessvasse .ees39
Building The Database SCREeMA.ocooccancossccccscascsse 40
Building The FORTRAN 1/0 SubroutinesS..ceceeeccscsee 41
Building The REVIEWER Input FileS.ceecccnccanne .41
Preparing The Programs....ccceecccecccecs tessescesssl
Execution Of The Complex Example....... csacane ee..85

SYSTEM LIBRARY PROCESSOR REFERENCE GUIDE...cccccecee 47
BR - To Build RelationS......... cecsscssseccscass 48
AR - To Add To An Existing RelatiON.ceesconosacne 50
8T - To Build A Template..ccoccevrccecce ceccecccns 51
BF - To Build FORMATTER Routines.................55
BS - To Build A Schema Dump For Database.........58
BRV - To Build A REVIEWER Input Fil@eeeoeoooneanssad9
BP - To Build Program Description...... ceases eessbl
PT - To Print A Template....ccceceecccsccccces ...64
LR - To List Relations...........................64
PR - To Print A Relation........ ceeccccasccvas e...04

v

TABLE OF CONTENTS

Section Page
7.0 REVIEWER REFERENCE GUIDE............... teececcccana .65
7.1 HODIFY Command M b R 2L I I B O I T .-..-00.66
7.2 CHANGE CATEGORY Command c ¢® 0000 v enessss e o.-oo-..68
7-3 NEXT PAGE COﬂmand N o.ooaoo..oono.o--000000-010068
7.4 REPRINT PAGE command R ..n.c..aooo..oo-.---000-069
7.5 LINES PER PAGE Command L eeeiiittietennnnnannn 69
7.6 EXPAND DISPLAY LENGTH Command S ceececes.b9
7.7 SET COLUMNS commaﬂd S .cooooc..cooo.-o..-003000.71
7.8 END commaﬂd E -o.on.00.-..-.........0...co...o--72
7.9 OUIT Commaﬂd 0 o-ocoo..o--.ocoo..o.o..o.ooo.-oo072
7.10 HELP commaﬂd H .-ou..Q-o.oc.--.---a.-.o..o-oo.--72
7.11 LIST CATEGORIES command CAT .o.....c..c.-o.c.o-.?Z
7.12 DEFINE REVIEW SUBSET Command SUB iiiennnn.. 73
7.13 TOGGLE COmmand T ...-c--cooo...-ooo...c.'o...--.73
7.14 Error "essages ucco....o.o.oo-o-'o--ooo001.0.073
APPENDIX A USE OF THE SYSTEM LIBRARY PROCESSOR
FOR THE COMPLEX EXA"PLE-Q....-oo....---A-l
APPENDIX B SOURCE CODE FILES...ieeiiiieenenennnnaB-1
APPENDIX C TEMPLATE MAKGEOIN........civvvun.... ee.C-1
APPENDIX D TEMPLATE DRAWIN.......e.o..... I) B3 |
APPENDIX E BUILD EASIE....iveeeeencnnnneennenn. N |
APPENDIX F INSTRUCTIONS - EASIE CODING FORM.......F-1
APPENDIX G VAX SYMBOL DEFINITIONS.........c.00u...6-1
REFERENCES
ABSTRACT

vi

Figure

3A
38

LIST OF FIGURES

Page
Subroutine GETDATAcceccccccccns cesesas ... 24
Subroutine PUTDATAccceccees ceccsacscscns 26
Original Program Box....ccceeeececcns cecccnne eeeell
Modified Program Box;....... 27
REVIEWER Display of Length, Width, and Height....35

REVIEWER Display of Volume.....c.cceveeeecccocccane 36
Format of Input File For the Program Draw........ 38
Display From Program DRAW.......ccccceee cescessaddbd
REVIEWER Display of Parameter Data...... cessesssslbd
REVIEWER Display of Attribute Data...... cececaseslb

1.0 INTRODUCTION -

The purpose of this document is to present a set of software
tools designed to aid in the complex task of integrating a
collection of application programs into a single system. The
Environment for Application Software Integration and Execution
(EASIE) tools offer a program integration approach critical in
defining and forming the data paths for inter-program
communication.

This document 1is intended for programmers faced with the
problems of program integration or program interfacing. For
readers unfamiliar with the rigors of program integration, the
following BACKGROUND section provides the necessary motivation.
Although the acronym EASIE implies simplicity, the problems
encountered when integrating two or more progréms are often
formidable. Consequently, the potential EASIE wuser should
anticipate a relatively high learning curve upon initial exposure
to the database management system (DBMS) terminology and software
tools. One of the principal advantages of using the EASIE tools
is that once the initial 1learning hurdle 1is conquered, the
learned program integration techniques are applicable to other
programs or sets of programs.

In addition to a knowledge of the program integration
problem, the reader should have some experience with DBMS
terminology and techniques. In particular, the EASIE tools rely
heavily on the techniques of the relational approach to DBMS such
as those described by C. J. DATE [1]. More specifically, the

EASIE tools are built upon the Relational Information Management

(RIM) DBMS [2]. However, as explained later in this document,
the EASIE tools are DBMS independent.

The computing environment in which the EASIE tools were
developed is a DEC VAX 11/785 running VMS 4.5, In some sections
of this document, necessary references are made to YMS utilities,
symbols, and other DEC system features. The interested reader
should consult DEC documentation for further details. The source
language is DEC's version of FORTRAN 77. Because certain EASIE
utilities involve <code generation in the form of FORTRAN
subroutines, the prospective user should be familiar with FORTRAN
language constructs.

The first few sections of this document provide background
information on the program integration problem. The majority of
this document is organized as a tutorial whereby new terms and
concepts are introduced as they are encountered in the normal
course of the program integration process. A SIMPLE INTEGRATION
EXAMPLE section introduces the basic features of the EASIE tools,
defines the relevant terminology, illustrates the menu and
command driven user interface, and concludes with program
execution. EASIE provides an environment for both program
integration and execution. As the name signifies, A MORE COMPLEX
EXAMPLE section details additional features of the EASIE DBMS
tools using a more sophisticated program integration problem.
The last two sections are reference guides to the SYSTEM LIBRARY
PROCESSOR Menu Options and to the REVIEWER commands including

ranges, limitiations, capabilities, and defaults.

The architecture of the EASIE user interfaces has been
designed, as much as possible, to be independent of the database
management system (DBMS) software and computer hardware. EASIE
Volume IV, SYSTEM INSTALLATION AND MAINTENANCFE GUIDE [31,
describes the considerations important to porting the EASIE
system to other computer systems using other DBMS software.
EASIE Volume 111, PROGRAM EXECUTION GUIDE [4], can be used
independent of the other EASIE Volumes, and provides the
guidelines for the selection and execution of application
programs, building menus, reviewing data, and editing program
input data. EASIE Volume I, EXECUTIVE OVERVIEW (51, contains the
information that is wuseful in determining if EASIE would be

peneficial to a specific project or study.

2.0 BACKGROUND

Over the past 25 years, the wuse of computer aids 1in
engineering has increased éxponentially. Today, much work that a
few years ago might have taken weeks can be done in seconds.
Application programs are available for virtually all engineering
disciplines.

This growth has not been void of problems, While
information may be obtained at g faster rate and in greater
abundance, the absence of standardization and lack of
coordination among software developers has resulted in the
proliferation of computer programs unable to communicate data to
other programs. Although two Programs may use the same data,
physical restrictions imposed by the computer environment may
inhibit the communication of the data between the programs. The
price being paid for this state of affairs is often the manual
transfer of data fronm One program to another with the associated
manpower loss, time delay, and potential for error
introduction. Several approaches can be taken to address this
problem. This document describes a set of software tools
designed to implement one approach used at LaRC for its
efficiency and flexibility. A brief example will serve tg
compare these approaches.

Assume a modeling program (PROGA) has been purchased from
Company A and an analysis program (PROGB) from Company B. Among
the output from PROGA is the TOTAL MODEL MASS written to an
unformatted file. PROGR requires the TOTAL MODEL MASS for input,

but the program is designed to read it from a formatted file,.

Logically, these programs could communicate data (TOTAL MODEL
MASS), though physically this communication is impossible due to
differing data environments (formatted versus unformatted
files). Consequently, some change must be made to enable the
transfer of data. This is typical of the problems faced when
several programs are to share data within a design activity.

At least three possible methods exist to facilitate

comnmunication between programs under such circumstances:

(1) Modify one or both programs (program integration).

(2) Develop a translator to convert the output of PROGA
into an acceptable input format for PROGB (program
interfacing).

(3) Use a database management system (DBMS) to store the
output from PROGA into the database and retrieve the
input for PROGB from the database.

For this example, method (1) appears to be the simplest, most
efficient means to communicate data. PROGA can be modified to
output TOTAL MODEL MASS in a format acceptable to PROGB.
However, the real world is seldom so simple. In a realistic
example, PROGA would likely produce abhundant output of which only
a portion would bhe required by PROGB. Format conversion would
not be the only problem to solve. All possihle output statements
would have to be located and understood before the format
conversion could be completed. In a large, complex program, this
would not be a trivial task.

The scenario can be worse. Suppose PROGA is to supply

inputs to several programs 1in the integrated system, each
requiring data in different formats. " PROGA would require

modifications to output, possibly the same data, to several

output files (additional overhead).

Although program complexity may render this approach
impractical, purchasing agreements may make it impossible. Many
software products are acduired without access to source code and
therefore may not be modified.

For this example, method (2) solves some of these
problems. Although the internal structure of programs is often
not readily accessible (complex code or no code), the inputs to
and outputs from programs are wusually well documented. A
translator program could be developed to read as input the output
of PROGA and write an output file acceptable as input to PROGB.
This method has the advantage of requiring no modification to
either program, but introduces additional overhead as it reads,
converts, and writes. Also, a separate translator would be
required for each application.

Method (3) may be implemented as a variation of either
method (1) or method (2). Using method (3), data are retrieved
from and stored in a relational database rather than converted
directly to another format. Using the simplified example, PROGA
could be modified to store TOTAL MODEL MASS directly into a
relational database; or if no source code 1is available, a
translator could be developed to read the output file from PROGA
and store TOTAL MODEL MASS in the database. PROGB could then
retrieve TOTAL MODEL MASS from the database by using either
method (1) or (2). In some cases, method (3) imposes additional
overhead because the data must be manipulated by the DBMS being
used and programmers with experience in using the selected DBMS

are required. However, there are significant advantages to be

gained when program integration is accomplished through method
(3). A DBMS is a collection of tools designed for fast random
access storage and retrieval of data allowing organization and
referencing of data by logical relationships without concern for
the physical file organization. [f such tools are used
exclusively in program integration, they establish standards for
the physical storage of data and reduce communication problems
associated with the data environment (differing formats).

Because of their random access capabilities, the DBMS tools
may increase efficiency in cases where small amounts of data are
required from a large output. Suppose PROGA outputs TOTAL MODEL
MASS at the end of a large output file. By method (2), if PROGB
and PROGC required TOTAL MODEL MASS, translators for both would
have to process the entire output file to locate the datum.
Using a DBMS, after the output from PROGA 1is stored in the
database, TOTAL MODEL MASS may be retrieved quickly without
unproductive processing. But most important, any new programs
added to the design activity that require output from PROGA can
access that datum without requiring further modification to PROGA
or its translator.

Although the advantages provided through method (3) are
attractive, especially when numerous programs are to be
coordinated, many programmers are hesitant to use a DBMS because
of the additional knowledge required. Not only are programmers
experienced with the interface to the DBMS required, but the
portability of the resultant software 1is reduced. If the

software is to be moved to another computer, the new machine must

have the selected DBMS. Conversions to other DBMS's are usually
costly and time consuming. Even conversions from one computer to
another, wusing the same DBMS, may require substantial software
changes.

An alternative is required that retains the advantages of
using a DBMS while minimizing the impact on the program
integrator. The EASIE data management tools are designed to
offer such an alternative. EASIE does not eliminate the need for
knowledge of a relational approach to database management, but
does reduce the need for specific knowledge of the interface to
the selected DBMS. These tools, which are addressed in the
remainder of this document, are based upon a processor which
makes the DBMS transparent to the user, while providing the
functions needed to quickly integrate (interface) programs around
a central database. The speed and versatility of the DNBMS
approach make it the most productive method for the development

of a system of integrated programs,

3.0 THE EASIE TOOLS FOR DATABASE HANAGEHENT AND PROGRAM
INTEGRATION

The EASIE DBMS tools allow programmers to work at a higher
level of abstraction than that provided through conventional
DBMS's. Using a user-friendly, interactive processor, the schema
of the database is described (relation names and descriptions;
attribute names and descriptions; data types; dimensions; and
units). Next, the data (program input or output) required for
each particular application are identified in an input or output
template. This template information, referred to as the SYSTEM
LIBRARY, is stored in the database and aids in the automation of
several tasks in the integration effort. Having described the
required relations, the initial database schema is automatically
produced. Using a generic editor, referred to as the REVIEWER,
and the template specification for the application program, a
consistent systematic method is provided to review/modify the
input or review the output for any program. Also, using the
template specification, FORTRAN subroutines are generated
automatically to retrieve data (for an input template) from the
database into a program's local variables. Similarly,
subroutines are generated to store data (for an output template)
from local variables into the database.

Using the EASIE tools, conventional tasks for database
integration are substantially reduced, program maintenance s
simplified, and the program integration task 1is more straight-
forward. In the following sections of this document, a simple
example using EASIE is presented providing the minimum discussion

needed to complete the example. A later section presents a more

complex example using additional EASIE techniques. The final

sections provide a complete reference guide to the EASIE tools.

3.1 Parameter Versus Attribute
Conventionally, a relational DBMS allows for organization of
data into tables, called relations, consisting of rows (tuples)
and columns (attributes) which provide storage for the matrix of
data. Most DBMS's do not provide a convenient means for storing
parametric data (data not representable by a matrix). For
example, in a modeling system, mass and volume of parts may be

represented by a table:

Part Name Mass Volume
T0P —T10 1
MINDDLE 20 200
ROTTOM 30 300

A database relation representing this table may be defined with
attributes: part name, mass, and volume. Each part would have a
tuple entry giving the actual values for each part. But how
would the total model mass and total mode] volume be stored?
Here a relation (matrix) representation is not appropriate.
EASIE provides for a special relation type defined as PARAMETER
type. A parameter relation is a collection of parameters of
varying types and dimensions that lTogically belong together.

Thus, a parameter relation could be defined as follows:

Parameter name Value
TOTMASS 60
TOTVOL 600

to contain the values for total model mass (TOTMASS) and total

model volume (TOTVOL).

10

In EASIE, the ~conventional matrix relation is called

ATTRIBUTE type.

3.2 Integration Using The Conventional Approach
To integrate a program with a DBMS, the following steps must

be taken:

(1) Examine the program and identify all data to be read
from the database (input) or written to the database

(output).

(2) Group the data into relations according to
logical relationships among the data accounting for
various types, dimensions, etc. Organize the

retrieval /output of data from/to the database required
by each program.

(3) Using the DBMS, <create a database containing the
schema for the required relations.

(4) Using the FORTRAN interface library of the DBMS, write
FORTRAN code to retrieve input from the database and
store output into the database.

(5) Because the interactive data modification capabilities
available with the DBMS are often not suitable for
efficient data modification, a FORTRAN processor may be
required to facilitate input modification and output
review. This processor may be called from within the
program (integrated) or executed as pre- (input review)
or post- (output review) processor to the program
(interfaced).

Often steps (3), (4), and (5) are the most difficult, time-
consuming, and error-prone activities. They also represent the
portion of this process that requires specific knowledge of the
selected DRMS, Using the EASIE tools, these steps are automated
to the extent that schemata, FORTRAN database 1/0 routines, and
the review capabilities are produced without the need for such

knowledge.

11

3.3 Integration Using EASIE

Within EASIE, information about the database and program
interaction with the database is recorded using an interactive
program, the SYSTEM LIBRARY PROCESSOR. A data dictionary is
constructed containing the name and description of each relation;
and the name, type, dimension, description, and units of each
parameter/attribute of the relation. A template 1library is
constructed containing the input and output templates required by
programs integrated with the database. A template 1is a
description of all relation subsets required as input/output
to/from a program. A program library is constructed storing
information about each program integrated into the system; i.e.,
location, execution procedure, input and output templates, etc.
A1l of this information is stored in a RIM database, The SYSTEM
LIBRARY.

Once this information is recorded in the SYSTEM LIBRARY
database, the SYSTEM LIBRARY PROCESSOR can automatically produce:

(1) an input file or FORTRAN program to create the schema
for the database with which the programs will be
inteqgrated.

(2) FORTRAN subroutines to retrieve input and store output
from/to the database for each program (using the input
and output templates). Nata are retrieved/stored
from/in the database into/from variables in the
subroutines that have the same names as the parameters/
attributes in the target relation. All communication
code wusing the FORTRAN interface to the DNDBMS is con-
structed by the processor.

(3) an input file to a generic REVIEWER program. The
file consists of an input or output template and
instructs the REVIEWER on which information to extract
from the database for review or modification. There-
fore, the one REVIEWER program may be used to retrieve
or modify data for any application.

12

After creating the schema for the database using output from
the processor, default input data may be established using the
REVIEWER providing one or more Master databases [6] exist and
which may be copied and modified. The generated FORTRAN routines
to retrieve/store data must be modified by the integrator to

communicate data to/from the program by:

(1) adding parameter and/or common blocks to the subroutine
to pass the values from/to the variables declared by
the processor. Also, the routine calling statement
must be placed at the appropriate location in the
applications program (program integration).

(2) creating a preprocessor (for input templates) or
post-processor (for output templates). The routines
are modified to create a stand-alone program that,
after reading the database, will write an input file
for the program or, after reading the output file,
store the data 1in the database (program inter-

facing).

In either case, database interaction has been automated.

13

4.0 A SIMPLE INTEGRATION EXAMPLE
The following is a step-by-step example to illustrate the
integration of a program with a database. Suppose a program,
BOX, is to be integrated with a database. BOX accepts as input
the length, width, and height of a box and computes its volume.
Step 1: Length, width, and height (real numbers of dimension 1)
are required as input in units of meters(M). Volume
(real number of dimension 1) is output in cubic meters
(M**3). To aid in the process of defining relations, a
standard form is suggested (Appendix F).
Step 2: All values are parameter type (represent no row/column
relationship) and will be placed in a single relation
DIMEN. Before proceeding to steps (3), (4), and (5),
the SYSTEM LIBRARY must be constructed.
4.1 Constructing The SYSTEM LIBRARY
The SYSTEM LIBRARY 1is physically a RIM database and the
schema must be established before entering data. The SYSTEM
LIBRARY database is initially <created by executing the VMS
command:
ATOAIDE:[RUILD DICTIBUILDDICT.COMLCRY
(See Appendix G for definition of symbols and logicals in VMS).
This places in the current directory a RIM database named DICT
containing the schema for the SYSTEM LIBRRARY, The RIM database
consists of three files: DICTL.DAT, DICT2.NDAT, and DICT3.DAT.
The SYSTEM LIBRARY PROCESSOR 1is executed 1in the same
directory containing the SYSTEM LIBRARY database by the command:
RUNDICTLCR>
resulting in the display of the following prompt.
ENTER NUMBER OF CHARACTER/WORD FOR TARGET SYSTEM:
4 FOR RIM ON PRIME/VAX

10 FOR RIM ON NOS
2 FOR SDRC/PRL

14

In this example, FORTRAN code is generated to interact with
a RIM database on a VAX computer. Therefore, the selected

response is 4.
The next display reveals the processor's main menu.

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

4.2 DNefining The Data Dictionary
The first task is to define the required relations (only
DIMEN in this example). Thus BR is selected, resulting in a
series of queries to define a relation.
ENTER RELATION NAME (DR <CR> WHEN DONE):
Enter the relation name "NDIMEN" <CR>.

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

DIMEN is to be parameter type (enter 1 <CR>).

ENTER RELATION DESCRIPTION (80 CHARACTERS):
The relation description is used to later identify contents of a
relation. Enter BOX DIMENSIONS.

ENTER YOUR NAME (20 CHARACTERS):
The name of the relation creator may be useful at a later time as
new programs are integrated. Enter the creator's name (the
current date is also recorded). Each parameter in the relation

DIMEN must now be described following the prompt.

15

DEFINE THE RELATION DIMEN:
The information necessary to describe a parameter is requested.
Recall that the first parameter is named LENGTH, of type REAL, of
dimension 1, and s measured in meters M. The parameter
description is defined as BOX LENGTH, The following sequence of
prompts and user responses (underlined) define the parameter

length.

ENTER PARAMETER NAME (OR <CR> WHEN DONE)>
LENGTH<CR>
RAMETER TYPE>
R<CR>
ENTER PARAMETER DIMENSION (UP TO 3 SEPARATED BY COMMAS) >
1<CR>
DIMENSION = 1
ENTER PARAMETER DESCRIPTION>
BOX LENGTHCCR>
ENTER UNTT OF MEASUREMENT (<CR> IF N/A)>
M<CR>
ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>
0K T0 ENTER THE PARAMETER LENGTH INTO THE DATABASE
(Y/N) (<CR>=N): ‘
Y<CR>

OQutput format is entered as a <CR> to indicate that the default
format for this type (real) is to be used by the REVIEWER.
Following the 1last entry, the sequence is repeated for width
(WIDTH, R, 1, BOX WIDTH, M, <CR>, Y), height (HEIGHT, R, 1, BROX
HEIGHT, M, <CR>, Y), and volume (VOLUME, R, 1, BROX VOLUME, M*=*3,
<CR>, YY), [f a mistake is made during the sequence, an N on the
final response will eliminate the entire parameter definition
from the NATA DICTIONARY, and the sequence %or that parameter may
be reentered. When the first prompt of the sequence appears
following the definition of the final parameter/attribute, by

entering a <CR> will end the relation DIMEN definition and the

16

following prompt will be repeated:
ENTER RELATION NAME (OR <CR> WHEN DONE):

The entry of another name would allow the definition of another
relation. Because the example has only the relation DIMEN, a
<CR> will end the DATA DICTIONARY definition and return to the
main menu.

When a good working knowledge of EASIE is achieved, an
implementer of a program requiring a large amount of input data,

should use the BUILD EASIE utility described in Appendix E.

4.3 Defining The Template Library

The second step is to define the TEMPLATE LIBRARY. Two
templates are required for the application program BOX. The
input template (named BOXIN) in effect makes the statement, as
input to program BOX, LENGTH, WIDTH, and HEIGHT are to be
retrieved from the relation DIMEN, Similarly, the output
template (named BOXOUT) in effect makes the statement, as output
from program BOX, VOLUME is to be stored in the relation DIMEN,

The main menu command, BT, is selected resulting in a series
of queries to define a template.

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):

Enter the input template name BOXIN.

ENTER 1 [F INPUT TEMPLATE
OR 2 IF QUTPUT TEMPLATE

BOXIN, an input template, defines data to be retrieved from the
database for input to the program BOX. The selected choice
ijs 1. Following the prompt:

INENTIFY ALL INPUT RELATIONS FOR THE TEMPLATE

17

the information describing data to be retrieved is requested.
Recall that input to the program BOX consisted of LENGTH, WIDTH,
and HEIGHT from the relation DIMEN. Following the prompt:

ENTER RELATION NAME (OR <CR> WHEN DONE):
the name DIMEN is entered. Because DIMEN was previously defined
as a parameter type relation, the response to the prompt

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

is 1 and the opportunity to review its parameters is provided by

the following prompt:

THE RELATION DIMEN 1S ALREADY DEFINED AND HAS 4 PARAMETERS.
DN YOU WANT TO SEE THEM (Y/N) (<CR>=N):

An affirmative response, Y, results in the following display

depicting necessary parameter information:

PARAMETER NAME DIM] DIM2 DIM3 TYPE NUMBER OF CHARACTERS

LENGTH REAL
WIDTH REAL
HEIGHT REAL
VOLUME REAL

Following this display or a negative response, N, the next prompt
provides the names of parameters to be retrieved.
ENTER O IF ALL PARAMETERS ARE TO BE RETRIEVED
OR 1 TO READ PARAMETERS TO BE RETRIEVED FROM A FILE
OR 2 TO ENTER PARAMETERS T0O BE RETRIEVED FROM THE TERMINAL
A response of 2 allows input of the desired parameters by
prompting,

ENTER PARAMETER NAMES EACH FOLLOWED BY <CR>:
(PARAMETER NAME=<CR> WHEN DONE)

Recall that only LENGTH, WIDTH, and HEIGHT are required from
NIMEN as input. A response of,

LENGTH<CCR>
WIDTHXCRS

18

HEIGHTLKCR>
<CR>

ends the selection of parameters from the relation DIMEN and the

inquiry,
YOU HAVE IDENTIFIED 3 PARAMETERS TO BE RETRIEVED
0K TO ENTER THE RELATION DIMEN INTO THE TEMPLATE BOXIN

(Y/N) (<CR>=N):
allows those selections to be entered into the template BOXIN
(affirmative response).

At this point, parameter/attributes from other relations
could be added to the template BOXIN following the repeated
prompt.

ENTER RELATION NAME (OR <CR> WHEN DONE):
As no other relations are required, a CCR> completes the series
of queries for defining a template and iterates the series for
subsequent template definitions. The following sequence
i1lustrates the definition of the output template ROXOUT (user

responses are underlined):

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):

BOXOUTCRY
TNTER T TF INPUT TEMPLATE

OR 2 IF OUTPUT TEMPLATE
2<CR>

THENTIFY ALL OUTPUT RELATIONS FOR THE TEMPLATE

ENTER RELATION NAME (OR <CR> WHEN DONE):
DIMENCCRY
ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE
1<CR>

THE RELATION DIMEN IS ALREADY DEFINED AND HAS 4
PARAMETERS.

D0 YOU WANT TO SEE THEM (Y/N) (<CR>=N):

N<CRD

ENTER O IF ALL PARAMETERS ARE TO BE REPLACED
OR 1 TO READ PARAMETERS TO BE REPLACED FROM A FILE

OR 2 TO ENTER PARAMETERS TO BE REPLACED FROM THE

TERMINAL
2<CR>

19

ENTER PARAMETER NAMES EACH FOLLOWED BY <CR>:
(PARAMETER NAME=<CR> WHEN DONE)

VOLUMECCR>
CR>

YOU HAVE IDENTIFIED 1 PARAMETERS TO BE REPLACED

OK TO ENTER THE RELATION DIMEN INTO THE TEMPLATE
BOXOUT (Y/N) (<CR>=N):

Y<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):

CCRY

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):

<CR>

The final <CR> returns to the processor's main menu marking the

completion of the TEMPLATE LIBRARY definition.

STEP 3:
4.4 Constructing The Database Schema

Having completed the DATA DICTIONARY and TEMPLATE LIBRARY
descriptions, an input file to RIM must be created for database
schema definition. The command BS allows the option for either
of two DBMS's,

ENTER 1 FOR RIM SCHEMA
OR 2 FOR SDRC/PRL SCHEMA

Because RIM is the DBMS for this example, 1 is entered. The name
of a file to contain the schema definition is supplied following
the prompt.

ENTER SCHEMA DUMP FILE NAME
OR "Q" TO RETURN WITHOUT WRITING A FILE

Entering SCHEMA.DAT (name selection is arbitrary) results in a
file of that name in the current directory containing the schema
definition. The schema for a single relation may be written to
the file by naming the relation following the prompt:

ENTER RELATION NAME FOR SCHEMA DUMP

OR <CR> FOR COMPLETE DATABASE SCHEMA DUMP
OR "Q" TO QUIT

20

The usual response (as in this example) is to create the schema
for the complete datahase by entering a <CR>.
Qutside the EASIE processor, interactive RIM must be
executed by issuing the following single commands (APPENDIX G),
RUNRIM
INPUT SCHEMAKCR>

which creates‘the schema for the database under the default name

NATADB.

STEP 4:

4.5 Producing FORTRAN Routines For Input And Output To/From The
Database

Most DBMS's provide a FORTRAN interface library of
subroutines to access the database. Data are transferred from/to
a relation one row {tuple) at a time using a one-dimensional
array. If the attribute types of the relation differ (integer,
real, character, etc.), an integer and real array must be
equivalenced for storage and packing/unpacking of the storage
array with the data in the order of the attributes in the
retation, (Character data may be packed into either the integer
or real array.) In addition to packing/unpacking the storage
array, other functions must be performed by these FORTRAN
routines. The database must be opened. The relations to be
accessed must be identified, and the search or sort conditions
for locating the data of interest must be established. The DBMS
error codes and row counts must be controlled. Without automatic
procedures to generate such code, a substantial amount of code

would need to be written by the program integration team and then

21

tested and proven correct, often a time-consuming activity.
Frequently, this new code is scattered throughout the existing
code, making future maintenance efforts more difficult.

Using the BF command, an input or output template is used to
automatically produce FORTRAN code for database interaction.
Data are either retrieved from the database and stored into
program variables (input template) or extracted from program
variables and stored in the database (output template). FORTRAN
declarative statements (name, type, and dimension) for these
program variables are automatically generated by the processor.
Variable names produced by the processor match the names of the
parameters or attributes as they exist in the database. The only
responsibility of the program integration team is to communicate
these variables to the program.

After issuing the BF command, the selected template name is
supplied following the prompt:

ENTER TEMPLATE NAME

OR <CR> FOR ALL RELATIONS

NR "Q" TO QUIT
To produce input routines for this example, BOXIN is entered.
Next, the file name to contain the input subroutines is provided
following the prompt:

ENTER GETDATA FILE NAME
OR "Q" TO RETURN WITHOUT WRITING A FILE.

Arbitrarily, BOXIN.FOR is entered. The next prompt:

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
provides the opportunity to reduce eight character
parameter/attribute names in the data dictionary to six

characters (adhering to ANSI standards). This 1is done by

22

truncation of any <characters beyond six and may result in
variable name conflict. Because a VAX will accept eight
character variable names, the answer is N. The final prompt:

DO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES?
(Y/N) (<CR>=N)

allows variable names tg bhe different from parameter/attribute
names in the data dictionary. Suppose the predefined parameter
named LENGTH was to bhe assigned to an existing variable named L
in the program, An affirmative answer to this inquiry would
provide the opportunity to assign the value of LENGTH in the
database into the variable L instead of the variable LENGTH. In
this example, the parameter names are satisfactory for variable
names. The answer is N, and the processor returns to the main
menu.

Once produced, the file BOXIN.FOR <contains source code
for a driver subroutine (GETDATA) and for one subroutine for
each relation to be accessed (1 1in this case). The driver
subroutine GETDATA_is the only routine that need be modified by
the program implementer and may be seen in figure 1. Notice that
the variahles LENGTH, WIDTH, and HEIGHT, are all typed REAL with
no dimension, and the database 1is given the default name of
DATANB, reference the statement DNDBASE =(8HDATADSB). After
the <call to the subroutine RI001 , the variables LENGTH, WIDTH,
and HEIGHT will <contain the values in the database for the
parameters LENGTH, WIDTH, and HEIGHT. The only changes required
by the program integrator are those necessary to communicate the
variables back to the program via either arguments lists or

common blocks. The parameters could be added to the CALL and

23

SUBROUTINE statements for the GETDATA_ subroutine. An
alternative, and the method used in this example, is to add a
common block containing the variables LENGTH, WIDTH, HEIGHT,
and VOLUME to the GETDATA subroutine under the assumption

that this common block also exists in the calling program,

SUBROUTINE GETDATA _

C
COMMON /DBNAME / DBASE_,DBOPN
REAL*8 NBASE _
LOGICAL DBOPN
c
C*+* THE PARAMETERS FOR THE RELATION DIMEN ARE :
REAL LENGTH
REAL WIDTH
REAL HEIGHT
C
C LOAD REQUIRED COMMON BLOCKS HERE:
C
INCLUDE 'BOXIN.COMMON/LIST'
NBASE = (BHDATADB)
c
CALL R1001 (LENGTH,WIDTH,HETGHT)
C
C MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:
C
INCLUDE ‘BROXIN.ASSIGN/LIST'
c
RETURN
C
END

Figure 1. - Subroutine GETDATA

i

Notice the comment,
C LOAD REQUIRED COMMON, BLOCKS HERE:.
Directly below is the VAX FORTRAN INCLUDE statement added by the
implementer to the automatically-generated code. To add common
blocks, the program integrator need only create a file using the

name BOXIN.COMMON containing the required common blocks. No

24

changes are required in the file BOXIN.FOR. Thus a file named
BOXIN.COMMON is then created containing the common block:

COMMON /INDIMEN/ LENGTH,WIDTH,HEIGHT.
Also notice the comment,

C MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:
following the call to the SUBROUTINE R1001 . [f, for example,
the database contained LENGTH in meters and the program exﬁected
input of LENGTH in feet, an assignment statement could be added
at this point to make the proper unit conversion. As this is not
the case in this example, no code additions are required here,
and the statement,

INCLUDE 'BOXIN.ASSIGN/LIST!
should be deleted. The file BOXIN,FOR is now ready for
compilation and linkage with the example program.

The BF command must be re-executed for the output template
BOXOUT, The following sequence of prompts and user responses
(underlined) build the file BOXOUT.FOR containing the FORTRAN
routines required to store VOLUME into the database,

BF <CR>
TNTER TEMPLATE NAME

OR <CR> FOR ALL RELATIONS

OR "Q" TO QUIT

BOXOUTKCR>

ENTER PUTDATA FILE NAME

OR "Q" TO RETURN WITHOUT WRITING A FILE

BOXOUT.FORLCRY

D0 YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<KCR>=N)

N<CR>

DO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES?
(Y/N) (<CR>=N)

N<CR>

Similar to the file BOXIN.FOR, BOXOUT.FOR <contains a driver

SUBROUTINE PUTDATA _ and one subroutine for each relation to be

25

accessed (1 in this case). The SUBROUTINE PUTNATA may be seen

in figure 2.

SUBROUTINE PUTDATA

c
COMMON /DBNAME_/ DBASE ,DBOPN
REAL*8 DBASE -
LOGICAL DBOPN
c
C*** THE PARAMETERS FOR THE RELATION DIMEN ARE:
REAL VOLUME
c
C LOAD REQUIRED COMMON BLOCKS HERE:
C
INCLUDE ‘'BOXOUT.COMMON/LIST'
DBASE = (8HDATADB)
C .
C MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:
c
INCLUDE 'BOXOUT.ASSIGN/LIST'
c
CALL W1001_ (VOLUME)
c
RETURN
c
END

Figure 2. - Subroutine PUTDATA _

Notice that the variable VOLUME is typed REAL with no
dimension, and again the default database name DATADB s
assigned to the variable DBASE . Noting the FORTRAN INCLUDE
statement, the program implementer need only create a file named
BOXOUT,COMMON containing the statement:

COMMON /OUTDIMEN/ VOLUME,

The common variable VOLUME is assumed to contain the proper
value wupon entry to the SUBROUTINE PUTDATA . Any necessary
format changes or other reassignments need to be made prior to

the call to the SUBROUTINE W1001 . As none are required here,

the statement,

26

INCLUDE 'BOXOUT.ASSIGN/LIST'

should he deleted. Immediately following the call to W1001 , the

value of VOLUME is stored in the database. With the
the file BOXOUT.COMMON, the file BOXOQOUT.FOR s

compilation and linkage with the example program.

4.6 Linking The Example Program

The original program BOX is seen in figure 3A.

creation of

ready for

Notice that

length, width, and height are read from the file BOXIN.DAT and

Volume is written to the file BOXOUT.DAT.

PROGRAM ROX
COMMON /INDIMEN/ LENGTH,WIDTH,HEIGHT
REAL LENGTH

COMMON /OUTDIMEN/ VOLUME
OPEN(8,FILE="BOXIN.DAT")
READ(8,*)LENGTH,WINTH,HEIGHT

CLOSE(8)
VOLUME = LENGTH * WINTH * HEIGHT
OPEN(9,FILE="BOXOUT.DAT")

WRITE (9,*)VOLUME

CLOSE(9)

END

Figure 3A.- Original Program Box

The modified example program (contained in the file BOX.FOR)

is seen in figure 3B.

PROGRAM BOX

COMMON /INDIMEN/ LENGTH,WIDTH,HEIGHT
REAL LENGTH

COMMON /OUTDIMEN/ VOLUME

C
CALL GETDATA
C
VOLUME = LENGTH * WIDTH * HEIGHT
C
CALL PUTDATA
C

END
Figure 3B.- Modified Program Box

27

Notice that former input data transfer statements (FORTRAN
OPEN, READ, and CLOSE) are replaced by a single call to the
SUBROUTINE GETDATA . Former output data transfer statements
(OPEN, WRITE, and CLOSE) are replaced hy a single call to
the SUBROUTINE PUTDATA . Both common blocks (INDIMEN and
OUTDIMEN) have been included. Following the call to GETDATA
(input of LENGTH, WIDTH, and HEIGHT), VOLUME is computed and,
through the call to PUTDATA , stored in the database. The file
BOX.FOR is compiled and linked via the following command sequence
(created in the BOX.COM file), generating the executable file
BOX.EXE.

$FOR BOX.FOR
$FOR BOXIN.FOR
$FOR BOXOUT.FOR
$LINK BOX.0BJ -
+ BOXIN.OBJ -
+ BOXOUT.0BJ -

+ LOADRIM/LIBRARY
SEXIT

STEP 5:

4.7 Creating REVIEWER Input Files

To this point, the DATA DICTIONARY (DICT) and TEMPLATE
LIBRARY (BOXIN, BOXOUT) have been created. Using them, a
database schema, DATADBR, and FORTRAN input/output routines
(ROXIN.FOR, BOXOUT.FOR) have been created. These routines have
been linked with the example program BOX which is now ready for
execution by obtaining its input from the database DATADB.
However, no values for LENGTH, WIDTH, and HEIGHT have been
established in the database. Execution at this point would
retrieve the value of zero (by default) for all three values

resulting in a computation of zero for volume.

28

Step (5) of the integration using the conventional approach
involves the use of the EASIE processor called the REVIEWER.

Using the BRYV command, a template is used to create an input
file for a standard REVIEWER program. Using the REVIEWER, input
values are changed and output values are examined.

After entering the command BRV, the prompt:

ENTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES
OR <CR> TO CREATE A LOCAL REVIEWER FILE

allows the user to specify a directory location for the REVIEWER
input file. This is important when using the directory structure
recommended for use [6,7] with the EASIE EXECUTIVE. For this
example, the REVIEWER input file remains in the current directory
by entering a carriage return. In response to the prompt:
ENTER TEMPLATE NAME

OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES

OR "Q" TO QUIT
the template name BOXIN is supplied. A file is thus created in
the current directory under the name ROXIN.REV containing input
directing the REVIEWER to retrieve LENGTH, WIDTH, and HEIGHT from
the relation DIMEN. The REVIEWER allows user modification and
replacement of the data.

Similarly, the following sequence of prompts and wuser
responses (underlined) create a file in the current directory
under the name BOXOUT.REV containing input directing the REVIEWER
to retrieve VOLUME for review:

BRVLCR>
TNTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES

OR <CR> TO CREATE A LOCAL REVIEWER FILE

<CR>
ENTER TEMPLATE NAME
OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES

OR "Q" TO QUIT
BOXOUTCCRY

29

4.8 Executing The Example Program

Having created both the input file for the REVIEWER
(BOXIN.REV) and the executable file (BOX.EXE), input to the
program BOX may be modified in the database by executing the
command:

REVIEW BOXINCCR>,

This will execute the REVIEWER using as input the file
BOXIN.REV, Immediately the display in the top half of figure 4
will appear. This demonstrates how the use of the SYSTEM LIBRARY
PROCESSOR tools can automate most of the integration tasks even
including an editing capability for data needed by the integrated
programs.

Issuing the commands (descriptions in brackets are not a

part of the command),

M 1 5<CR> [MODIFY LENGTH TO 5 METERS]
M 2 10<CR> [MODIFY WIDTH TO 10 METERS]
M 3 15<CR> [MODIFY HEIGHT TO 15 METERS]
R<CR> [REDRAW THE SCREEN]

will modify the values for LENGTH, WIDTH, and HEIGHT and redraw

the screen with the new values. The final screen display is

shown in the bottom half of figure 4. Finally, the command:
E<CR>

will replace the values in the database.

Execution of the example program will now retrieve these
input values, compute VOLUME, and replace VOLUME in the
database. The VMS command,

RUN BOX.EXECCR>

will execute BOX.

30

Issuing the VMS command:
REVIEW BOXOUTKCR>
will execute the REVIEWER using as input the file BOXOUT.REV.
Immediately the display in figure 5 will appear. Note the
correct value of 750.000M3 has been computed for the parameter

VOLUME.

4.9 Concluding The Simple Example

The following is a review of the process for integrating the
program ROX. In the previous example, the SYSTEM LIBRARY
PROCESSOR was used to:

(1) Define a parameter relation (DIMEN).

(2) Define input (BOXIN) and output (BOXOUT) templates
accessing some portion of the relation DIMEN.

t file for RIM to <create the schema

(3) Build an pu
for DIMEN,

in
(SCHEMA.DAT)

(4) Build FORTRAN subroutines (BOXIN.FOR and BOXOUT.FOR)
to access portions of the database as described in the
input and output templates.

(5) Build input files for the REVIEWER to review/modify
data described by the input and output templates
(BOXIN.REV and BOXOUT.REV).

After modifications to the program BOX.FOR (to call the FORTRAN
routines mentioned in step 4 above) and modifications to the
input and output subroutines (that pass data to and from
BOX.FOR), the three files, BOX.FOR, ROXIN.FOR, and BOXOUT.FOR
were compiled and linked. Executing the REVIEWER using the input
template BOXIN to establish LENGTH, WIDTH, and HEIGHT, was
followed by execution of BOX (BOX.EXE) which stored the resultant
VOLUME into the database. The computed value for VOLUME could be

reviewed through execution of the REVIEWER wusing the output

31

template BOXOUT.

To aid in the variable definition task, the EASIE Form 1 as
explained in Appendix F may be useful. Notice that after
designing the relations and templates (work that must be done in
some form no matter what integqration approach is used), the
relations are placed in the DATA DICTIONARY. Anyone familiar
with a relational DBMS (such as RIM) will recognize that this
procedure, with the exception of defining parameter/attribute
descriptions and units, is not more difficult than the
conventional approach to define the databhase schema. Defining
the templates may be argued to be additional work, but the
procedure is simple and once completed much of the remaining
difficult work required by the conventional approach is
automated. Production of the schema is accomplished by
instructing the SYSTEM LIBRARY PROCESSOR to create an input file
which is read by RIM, Routines to interact with the database
using the FORTRAN interface library of RIM are automatically
produced leaving the program implementer responsible for the task
of defining the FORTRAN <communications of data from one
subroutine to another (no special RIM knowledge required). Input
to the generic REVIEWER program is automatically produced for any
given template, and data can be reviewed of modified using the
same techniques for any template, thus for any program. Recall
that all steps but the actual execution are performed once for
each program by the integration team. The designer/engineer
performs the final steps of data review, data modification, and

program execution.

Obviously, many of the tedious, error-prone tasks required

32

using the conventional approach have been eliminated. However,
other advantages may not yet be apparent. Because the FORTRAN
I1/0 routines are produced automatically and data modification is
accomplished using the REVIEWER, potentially any relational DNDBMS
may be used. Originally, the EASIE tools were implemented using
A Relational Information Management System (ARIS). Later,

because of changing requirements at Langley Research Center, the

tools were converted to use RIM, As needs changed, the
capability to use PEARL (Structural Dynamics Research
Corporation's I-NDEAS system [8]) was added. NDuring these

transitions, no changes were required in the EASIE integrated
programs.A As the desired DBMS was changed, only new FORTRAN 1/0
routines and REVIEWER input files needed to be generated using
the modified SYSTEM LIBRARY PROCESSOR. Since the REVIEWER uses
the same commands and presents the data the same, there is no
impact in this area regardless of the selected template or DBMS.
Also, future maintenance efforts have been reduced. Anyone
having worked on a Tlarge system of programs integrated into a
DBMS wusing the conventional approach understands how such a
system can create maintenance problems. Database interaction
code written by a large group of programmers may be scattered
throughout many 1/0 processors and progranms. Coding standards
may be established, but are difficult to enforce. Using EASIE,
coding standards are established and enforced by using the SYSTEM
LIBRARY PROCESSOR. Hand-written I/0 processors are replaced by
the REVIEWER. 1/0 subroutines are written by the processor, thus

eliminating the need for a maintenance programmer to read or

33

write database interaction code.

Conventional DBMS's usually provide a means to “dump" data
to an ASCII file for data transfer from one database to
another. If the data are logically the same but the schemata are
different, conventional dump utilities cannot accommodate
different schemata. Using EASIE, FORTRAN routines can he created
to retrieve from one database and store in another. The
progranmer need only assign logically identical data from one

variable to another.

34

CATEGORY 1: DIMEN
BOX NIMENSIONS

---------—---—-—-------------—----_—-—--_----_--—-—-—---—--—--—-—-----—--------—

L ! PRESENT VALUE ! NAME ! SUBSCRIPT ! NESCRIPTION ! UNITS
1! 0.0000000 ! LENGTH ! ! BOX LENGTH I'M

2 ! 0.0000000 ! WIDTH ! | BOX WIDTH I M

3! 0.0000000 ! HEIGHT ! ! BOX HEIGHT ' M

........---____-.._-__-_-----_-_--_---_-_-__-______-....._..-..______-,-..___-__--__-__-___

Mn : modify value (n = line#,name(subscript),or line range)
C n : change category {(n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n tn line#'s per page, X n : expand lTine# n

[: end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:
M 1 5<CR>
>M 2 10<CR>
SM 3 15<CR>
>RLCR>
CATEGORY 1: NIMEN
BOX DIMENSIONS
L ! PRESENT VALUE | NAME ! SURSCRIPT ! NESCRIPTION I UNITS
1! 5.0000000 ! LENGTH ! I BOX LENGTH I'M
2 ! 10.0000000 ! WIDTH ! ! BOX WIDTH I'M
3! 15.0000000 ! HEIGHT ! ! BOX HEIGHT 'M

-—-------—-----_-_-------_—_-—_-_-—-—-—-----—-_---_-----—-—---——-_---_-_——_---¢.

M n : modify value (n = line#,name{subscript),or line range)
C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n :n line#'s per page, X n : expand line# n

£ - end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:
>E<CR>

Figure 4. - REVIEWER Display of Length, Width, and Height

35

t

CATEGORY 1: DIMEN
BOX DIMENSIONS

--------—-----------‘---—---_-—-—---------—_--_--—---------—--———-——---—_-—--—
--_------—-------------—--------—-_-—-------------—-----—----—------—--—--------

-----—----—---------------———-—-----—--—-----_-----_------—------—----------—-.—-

n : modify value (n = line#,name(subscript),or 1ine range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:
>Q<CR>

Figure 5. - REVIEWER Display of Volume

36

5.0 A MORE COMPLEX EXAMPLE

While the simple example does illustrate the major functions
of the SYSTEM LIRRARY PROCESSOR and the standard flow of the
program integration task, some additional capabilities available
through the EASIE system may require further explanation. To
accomplish this, a second example will be described. For the
sake of brevity, the user prompts and proper responses are not
embedded within the discussion, but rather are included in
Appendix A. No step-by-step reference will be made to this
appendix. It is highly desireable to follow along the printed
screen text during the discdssion.

In this example, the following new features will be

demonstrated:

(1) The use of Attribute relations (in addition to
Parameter relations).

(2) The use of character and integer data types and multi-
dimensional data structures.

(3) Program interfacing in addition to program integration.
5.1 A Description Of The Programs

Suppose two commercially available programs require
communication, The program MAKGEO is available with source code
(Appendix B) and receives as its input the length, width, and
height of a box. MAKGED outputs the geometry for the box
centered at the origin with length along the X-axis, width along
the Z-axis, and height along the Y-axis. The geometry output
consists of an array of point coordinates (X, Y, Z) and an array
of faces. (For each face, start at point;, draw to point:, draw

to point,, draw to pointy; and draw to point;, where i,j,k,1 are
k 1 i

37

indices into the point array.) Because source code is available,
user subroutines can be linked into the program to retrieve
length, width, and height from the database and store the
geometry into the databhase. This method, as in the simple
example, represents program integration with the database.

The program DRAW is available only as an executable record,
i.e. no FORTRAN source code,. [t is a generic display processor
accepting as input a‘facet geometry description, i.e. points and
faces as described ébove. Recause no changes can be made to the
input module of DRAW, an input file must be provided in the
format (figure 6) acceptable to program DRAW, A preprocessor
will be required to retrieve the geometry from the database and
create a correctly formatted input file. The preprocessor must
then be executed prior to execution of program DRAW. This method

represents program interfacing with the database.

MODEL NAME AS0
X, Y, Z ROTATIONS IN RADIANS 3(E12.4)
NUMRER OF NODE POINTS 15

X. Y, 7 COORDINATES OF FIRST NODE 3(E12.4)
X, Y., 7 COORDINATES OF LAST NODE 3(E12.4)
NUMBER OF FACES 15
FACE(1),FACE(2),FACE(3),FACE(4)FOR FIRST FACE 415
FACE(1),FACE(2),FACE(3),FACE(4)FOR LAST FACE 415

Figure 6. - Format Of Input File For The Program DRAW

5.2 Defining The Relations
Since the variables length, width, and height (input to
MAKGED) have previously been defined in the relation DIMEN, they

do not require redefinition. Two relations require definition to

38

contain the geometry (output from MAKGED and input to DRAW,)
These relations are defined using the RR command and include:

(1) NODES - An attribute relation with attrihutes (columns)
X, Y, and 7/ (all real numbers, dimensioned 1 and measured in
neters.,) The three attributes contain the X, Y, and 7
coordinates of the points. Fach row then represents a three-
dimensional point in space. The number of rows represents the
number of points in the current model.

(2) FACES - an attribute relation with one attribute
(column), FACE {an integer array dimensioned 4), containing the
indices to the node relation rows comprising a facet in the
model. Each row of the relation FACES represents a single face
composed of moving to the FACE(1) row of nodes, drawing to
FACE(2) row of nodes, drawing to FACE(3) row of nodes, drawing to
FACE(4) row of nodes, and finally, closing the facet by drawing
to FACE(1l) row of nodes. Note that this relation could have been
defined having 4 integer attributes each dimensioned 1 to contain
the 4 indices to the NODES relation. The selected definition was
chosen to illustrate FEASIE's multidimensional capability for
attribute relations.

Notice in figure 6, that the program DRAW requires as input
a model name (1lst record of the input file as a character string
of length 80) and X, Y, and 2 rotation angles for the model (2nd
record of the input file as three real values). A parameter

relation, MODEL, is defined to contain these two parameters.

5.3 Defining The Templates

Using the BT command, an input template, MAKGEOIN, s
defined for the program MAKGEOQ. The parameters LENGTH, WINTH,
and HEIGHT are to be retrieved from the relation DIMEN.

During template creation, attribute relations present
several options not applicable to parameter relations. In
addition to selecting a subset of attributes, a subset of rows
may be specified by entering one or more WHERE clauses, stating

conditions required for row selection. Example: where x greater

39

than 500. Rows may be retrieved, sorted by selected attributes,
by entering a SORT clause. In this example neither of the
special capabilities is required; There are also several options
for replacing rows. For more detail on these options, reference
section 6.3.

An output template, MAKGEOOT, is defined for the program
MAKGEOQD. The attributes X, Y, and 7, are to be stored in the
relation NODES, using no special conditions and no sort
conditions. The rows are to be replaced suéh that only rows in
the current model remain in NODES. A1l others are deleted, using
the option, replace all tuples exclusively. A1l attributes,
FACE, are to be stored in the relation FACES in the same way.

An input template, DRAWIN, is defined for the program
DRAW. A1l parameters are to be retrieved from the relation
MODEL. A1l attributes are to be retrieved from the relations
NODES and FACES using no special conditions and no sort
conditions.

No output template is required for the program DRAW because
jts output s a graphical display of the contents of MODEL,

NODES, and FACES.

5.4 Building The Database Schema
ising the BS command, an input file, called SCHEMA.DAT, to
interactive RIM is created which contains the commands to build

the schema for the relations DIMEN, NODES, FACES, and MODEL.

40

5.5 Building The FORTRAN I/0 Subroutines

Through the BF command, the input template MAKGEOIN is used
to generate the file MAKGEOIN.FOR which contains the subroutines
to retrieve length, width, and height from the relation DIMEN.
Similarly, the template MAKGEOOT is used to generate the file
MAKEGEOOT.FOR which contains the subroutines to store the model
node points into the relation NODES and the model faces into the
relation FACES. Because the attributes for NONDES and FACES will
be represented as FORTRAN arrays, dimensions are supplied for the
array declarations. These dimensions should match the dimensions
within the program. Because MAKGEO constructs a box, 8 nodes and
6 faces are required. Finally, the template DRAWIN is used to
generate the file DRAWIN.FOR which contains the subroutines to
retrieve NAME and ROTATION from the relation MODEL, the model
node points from the relation NODES, and the model faces from the
relation FACES. Recause the program DRAW is capable of
displaying a model of up to 100 nodes and 100 faces, a dimension

of 100 is selected for hboth NODES and FACES.

5.6 Building The REVIEWER Input Files

Prior to executing MAKGEOD, values for LENGTH, WIDTH, and
HEIGHT must be established in the database. To provide this
capability, a REVIEWER input file is created (MAKEGEOIN.REV)
using the template MAKGEOIN.

Prior to executing DRAW, values for NAME and ROTATION should
be established in the database. This capability is provided by

creating a REVIEWER input file using the template DRAWIN. Recall

41

that in addition to MODEL, the relations NODES and FACES are also
accessed by the template DRAWIN. Assuming a decision is made
that geometry modification should only be allowed through
modifications to LENGTH, WIDTH, and HEIGHT and re-execution of
MAKGEO, a row modification flag in the template input file is set
to 2 (no row modification) for both NODES and FACES. Other flag
values would allow modification to the geometry wusing the
REVIEWER. An alternative would have been to create a template
which only accessed the relation MODEL. However, wusing the
selected method, a user may review the geometry as NAME and

ROTATION are modified.

5.7 Preparing The Programs

Use of the SYSTEM LIRRARY PROCESSOR 45 complete. The
remaining tasks to complete the integration are:

(1) Read the SCHEMA.DAT input command file into interactive
RIM to create the database.

(2) Include common blocks in MAKGEOIN.FOR and MAKGEOOT.FOR
to communicate data to/from the program MAKGEQ.

(3) Modify MAKGEQ to call the subroutines GETDATA and
PUTDATA_ in the appropriate places.

(4) Link MAKGEQ object file with objects of MAKGEOIN,
MAKGEOOT and RIM library.

(5) Include FORTRAN code in the DRAWIN.FOR source file to
create an input file that is used by program DRAW.
This input file contains data retrieved from the
database.

(6) Link DRAWIN object file and RIM library as a stand-
alone program to he executed 4S 4 preprocessor to DRAW.

The schema for the database may be established by the

command:

42

SRUNRIM
followed by the RIM command:
INPUT SCHEMA,

Within the FORTRAN source code for the program MAKGEOD,

(MAKGEO.FOR, Appendix B) are the common blocks:
COMMON/INDIMEN/LENGTH,WIDTH,HEIGHT
COMMON/OUTGEO/X(8),Y(8),2(8),NG,FACE(4,6),NF.

A file named MAKGEOIN.COMMON must be created containing the
common block INDIMEN, A file named MAKEGEOOT.COMMON must be
created containing:

COMMON/OUTGEO/X,Y,Z,NO02_,FACE,NOO3 .

Notice that dimensions for X, Y, Z, and FACE have been
eliminated because they are contained in separate declarations
within MAKGEOOT.FOR.

Also, notice in the call to SUBROUTINE W1002 (passing the
parameters to be stored in relation NODES) are the parameters X,
Y, and Z which are arrays containing the node points and the
integer parameter N0O0OZ2_ that must contain the number of node rows
to be stored in the database. NO00O2_ has then replaced NG in the
common block OUTGEO. Similarly, in the call to SUBROUTINE W1003 ,
is the integer parameter NOO3_ which must contain the number of
face rows to be stored in the database. NOO3_ has then replaced
NF in the common block OUTGEOQ.

Since no variable reassignments are necessary, the code
line:

INCLUDE 'MAKGEOIN,ASSIGN/LIST'
is eliminated (by commenting) from the file MAKGEOIN.FOR. Also

the code line:

43

INCLUDE 'MAKGEOOT.ASSIGN/LIST'
is eliminated (by commenting) from the file MAKGEONT,FOR. A
recommended alternative approach is to create empty files using
the names MAKGEOIN.ASSIGN and MAKGEOOT.ASSIGN thus preventing the
need for the modifications to the files MAKGEOIN.FOR and
MAKGEOOT.FOR.

A call to SUBROUTINE GETDATA (in file MAKGEOIN.FOR) is
added to the beginning of the program MAKGEO, and a call to
SUBROUTINE PUTDATA is added to the end of the program MAKGEOD.
MAKGEO.FOR, MAKGEOIN,FOR, and MAKGEOOT.FOR are compiled and
linked using the file MAKGEO.COM,

Execution of MAKGEO will now retrieve LENGTH, WIDTH, and
HEIGHT from the database (call to GETDATA) passing these values
viab COMMON/INDIMEN/ to the main program which will fill the
arrays X, Y, Z, and FACE, and the parameters NG and NF with the
geometry for the specified box. The main progranm will pass the
values via COMMON/OUTGEO/ to SURROUTINE PUTDATA which will
store the geometry into the relations NODES and FACES. Recall
that this method represents program integration with the

databhase.

Because the program DRAW is available as an executable file
only, it cannot be modified. The file DRAWIN.FOR must be
modified to become a stand-alone program that will retrieve the
model name, rotations, and geometry from the database and format
the data in a file as input to DRAW.

The SUBROQUTINE, RETURN, and COMMON INCLUDE statements are

commented.

44

The file DRAWIN.ASSIGN is created, amd <contains the
statements to write the model name, rotations, and geometry (in
the required format) for the file DRAW.DAT, as input to the
program DRAW,

Notice that the program DRAW requires rotations to be input
in radians, but in this example, rotations are stored in the
database as degrees and converted to radians prior to writing the
DRAW.DAT file. DRAWIN.FOR is compilied and lTinked using the file
DRAWIN.COM,

Execution of DRAWIN will now retrieve model name, rotations,
and geometry from the database and create an input file DRAW.DAT
to be used as input to the programn DRAW. Recall that this method

represents program interfacing with the database.

5.8 Execution Of The Complex Example
The VMS command: $REVIEW MAKGEOIN
produces the display shown in Appendix C.
The REVIEWER commands:
M LENGTH 1
M WINDTH 2
M HEIGHT 3
E
to establish LENGTH, WIDTH, and HEIGHT of the hox as 1, 2, and 3
meters, respectively.
The VMS command: $RUN MAKGED
executes MAKGEO and creates the box geometry.

The VMS command: $REVIEW DRAWIN

produces the display shown in Appendix D.

45

The REVIEWER commands:

Mol ‘TEST BOX'
M2 20

M 3 30

M 4 40

E

establishes the model name 'TEST BOX' and X, Y, and Z rotations
of 20, 30, and 40 degrees, respectively.

The VMS command: $RUN DRAWIN
executes DRAWIN and creates the input file for the program DRAW.

The VMS command: $RUN DRAW
produces the display, shown in figure 7, only on a TEKTRONIX 4014
or compatible terminal. Source for the program DRAW is available
on the file

TOAIDE:[EXAMPLE.SOURCE JDRAW.FOR

and may be modified to use another graphics system.

TEST BOX

Figure 7. - Display From Program DRAW

46

6.0 SYSTEM LIBRARY PROCESSOR REFERENCE GUIDE

Sections 4 and 5 introduce commands of the SYSTEM LIBRARY
PROCESSNOR used for specific examples. The purpose of this
section is to describe each command detailing all options and any
restrictions. These command descriptions are application-
independent as the intention is to provide a reference guide for
all possible uses of the command.

A1l commands are described as they apply to ATTRIBUTE
relations (section 3.1). Unless specifically stated otherwise,
for any descriptions or prompts, the word attribute may be
replaced by the word parameter to render the command description
useful for PARAMETER relations.

A1l prompts appear as presented by the SYSTEM LIBRARY
PROCESSOR with the exception of words enclosed by percent signs
(% %). Such words represent words or phrases that depend upon
the particular application and previous, user responses. All
user responses are underlined and followed by a carriage return
character {(<CR>).

Refore executing the SYSTEM LIRRARY PROCESSOR, the SYSTEM
LIBRARY NDatabase must reside in the current directory. To create
the SYSTEM LIBRARY database and execute the SYSTEM LIBRARY
PROCESSOR, see Section 4.1.

The initial prompt:

ENTER NUMBER OF CHARACTER/WORD FOR TARGET SYSTEM:
4 FOR RIM ON PRIME/VAX
10 FOR RIM ON NOS

2 FOR SDRC/PRL
yNUMBER OF CHARACTERS PER WORD%<CR>

47

establishes a conversion factor used by the “BRY" and "“BF*"

commands to retrieve/store character data from/to the database.

The proper response depends upon the host computer system and/or

the database management system used in execution of the REVIEWER

and database read/write subroutines (generated by the FORMATTER).
The SYSTEM LIBRARY command menu follows:

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV T0O BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM NESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - T0 EXIT

6.1 BR - To Build Relations
The first step in constructing the SYSTEM LIBRARY is to
define the relations. The "BR" command can be used at any time
to add a relation to the SYSTEM LIBRARY,
BRCCRY

ENTER RELATION NAME (OR <CR> WHEN DONE):
YRELATION NAME%<CR>

Relation names are 1 to 8 alphanumeric characters and must be

unique.

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE
KOPTION%<CR>

A relation must be defined as PARAMETER or ATTRIBUTE type.

ENTER RELATION DESCRIPTION (80 CHARACTERS):
LRELATION DESCRIPTION%KCR)>

48

The relation description 1is presented by the REVIEWER.

ENTER YOUR NAME (20 CHARACTERS):
%INTEGRATOR'S NAME%<KCR>

This entry exists only to record the name of the program
integrator responsible for creating this relation. Following the
prompt:

DEFINE THE RELATION %RELATION NAME%:
loop begins to define each PARAMETER/ATTRIBUTE. The same
information is required for both.

ENTER ATTRIRUTE NAME (OR <CR> WHEN DONE)>
YATTRIBUTE NAME%<KCR>

Names are 1 to 8 characters and may not end with the
underscore (_) character. These names are also used as FORTRAN
variable names in the FORMATTER, database read/write routines.

ENTER ATTRIBUTE TYPED
%1 ,R,0R C%<CR>

PARAMETER/ATTRIBUTES may be typed integer (I), real (R), or
character (C). If character type is selected,

ENTER NUMBER OF CHARACTERS IN STRING>
%STRING LENGTH%<KCR>

the number of characters is solicited.

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
%UP TO 3 NDIMENSIONS%<CR>

PARAMETERS/ATTRIBUTES may be 1-, 2-, or 3-dimensional. A <CR>
indicates a default single dimension of size one. For example,
to dimension an attribute that is 2 x 3 x 6 enter:

2,3,64CR>
The following report

DIMENSION = 2 X 3 X 6

indicates the selected dimension.

49

ENTER ATTRIBUTE DESCRIPTIONY
%ATTRIBUTE DESCRIPTION%<CR>

i 1 _ CCR> IF N/A)>
ZUNITZCCRY

Descriptions are limited to 80 chdaracters. Units are a maximum
of 16 <characters. Both are presented by the REVIEWER,

ENTER OUTPUT FORMAT (<CR> IF N/A)>
CR>

The intention of including an output format is to control output
of the PARAMETER/ATTRIBUTE by the REVIEWER. However, this input
is not currently recognized by the REVIEWER, and a <CR> response
is sufficient.
If all inputs are correct, an affirmative response to:
OK TO ENTER THE ATTRIBUTE %ATTRIBUTE NAME% INTO THE DATA

BASE (Y/N) (<CR>=Y):
%Y OR N%<CRD

enters the PARAMETER/ATTRIBUTE into the SYSTEM LIBRARY
PROCESSOR. A negative response disregards these entries.

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)
<CR>

This completes the Toop for defining a PARAMETER/
ATTRIBUTE. The loop <continues to define subsequent PARAMETERS/
ATTRIBUTES until a <CR> is entered for:

ENTER RELATION NAME (OR <CR> WHEN DONE)>
<CR>

6.2 AR - To Add To An Existing Relation

PARAMETERS/ATTRIBUTES are added to an existing relation by
this command. All prompts and responses are the same as the "BR"
command. PARAMETERS/ATTRIBUTES are added to the end of the
defined relation. As a warning, note that templates that access

all PARAMETERS/ATTRIBUTES for an expanded relation (0 option in

50

the BT command described in Section 6.3) will access these new
PARAMETERS/ATTRIBUTES in subsequent executions of the BRV and BF

commands.

6.3 BT - To Build A Template
After relations are defined templates are designed to
specify input/output from/to the database for a given
application.
BT<CR>

ENTER TEMPLATE NAME (DR <CR> WHEN DONE):
ZTEMPLATE NAME%<CR>

Template names are 1 to 8 characters in length and must be

unique.

ENTER 1 IF INPUT TEMPLATE
OR 2 IF OUTPUT TEMPLATE
HOPTION%KCR>

Input templates describe data to be retrieved from the
database, Output templates describe data to be stored into the
database. This option determines the type of subroutine produced
by the BF command (GETDATA or PUTDATA__ described in Section
6.4).
Following the prompt:

IDENTIFY ALL %INPUT OR OUTPUT% RELATIONS FOR THE TEMPLATE
loop begins to describe how the template accesses a relation.

ENTER RELATION NAME (OR <CR> WHEN NONE):

FRELATINN NAME%<KCR>

ENTER T FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE
ZOPTION%<CR>

The relation name and type are entered. If the relation does not
exist, the BR command is entered automatically to define a new
relation. If the relation exists, an option allows review of the

relation schema:

51

THE RELATION %RELATION NAME% IS ALREADY DEFINED AND HAS
INUMRER OF ATTRIBUTES% ATTRIBUTES.

D0 YOU WANT TO SEE THEM (Y/N) (<KCR>=N):

%Y OR N%CRD>

An affirmative response displays the relation schema similar to

the following sample.

ATTRIBUTE NAME DIMI] NiM2 DIM3 TYPE NUMBER OF CHARACTERS

Al 2 3 6 CHAR 20
A2 INT
A3 10 REAL

A negative response results in no such display.

ENTER O IF ALL ATTRIBUTES ARE TO BE REPLACED
OR 1 TO READ ATTRIBUTES TO BE REPLACED FROM A FILE
OR 2 TO ENTER ATTRIBUTES TO BE REPLACED FROM TERMINAL
%0PTION%<CR>

A1l or some of the PARAMETERS/ATTRIBUTES of a relation may
be accessed. A "0" response indicates all PARAMETERS/ATTRIBUTES
are to be accessed. A "1" response results in a query for a file
name containing the desired 1list of names (one name per
record). A "2" response results in the prompt:

ENTER ATTRIBUTE NAMES EACH FOLLOWED BY <CR>:
SATTRIBUTE NAME%<CR> WHEN NONE

Names are then entered one per line. If a name is entered that
does not exist in the relation, it is ignored and the prompt:

THE ATTRIBUTE NAME %ATTRIBUTE NAME% IS NOT DEFINED FOR
THIS RELATION,
TRY AGAIN:

allows input to continue with a warning. Again the option:
THE RELATION %RELATION NAME% IS ALREADY DEFINED AND HAS

yNUMBER OF ATTRIBUTESY% ATTIRBUTES.
D0 YOU WANT TO SEE THEM (Y/N) (<CR>=N):

appears to provide review of the relation schema. Regardless of

the option taken, the prompt:
NEXT ATTRIBUTE:

indicates that name input is to continue.

52

After all desired names are entered, a <CR> ends the naming

process and results in the report:

YOU HAVE IDENTIFIED %NUMBER OF ATTRIBUTES% ATTRIBUTES TO
BE RETRIEVED

For ATTRIBUTE type relations only, rows may be retrieved/replaced
under conditional clauses and sorted by one or more attributes.
ENTER NUMBER OF CONDITIONS IN THE "WHERE" CLAUSE

OR 0 FOR NO CONDITIONS
%NUMBER OF WHERE CONDITIONS%<CR>

Entering an integer greater than "0 will require the
specification of WHERE clauses:

FOR CONDITION %CONDITION NUMBER% ENTER:
ATTRIBUTE NAMED

JATTRIBUTE NAME%<CR>

LOGICAL OPERATOR>

%LOGICAL OPERATOR%<CR>
VATUE(%ATTRIBUTE TYPE%)>

LTVALUEZ%ZLKCRD

Attribute names must be defined for the relation. Logical
operators are EQ, NE, LT, GT, LE, OR RE, Values must be of the
same type as the attribute named.

If more than one WHERE condition is specified; the above
sequence 1is repeated for each condition, and repetitions are
separated by the query:

BOOLEAN OPERATOR FOR CONDITIONS %PREVIOUS CONDITION% AND

ANEXT CONDITIONY%>
%BONLEAN OPERATOR%CR>.

Legal choices for the boolean operator are AND or OR,

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR 0 FOR NO CONDITIONS
%NUMBER OF SORT CONDITIONS%<CR>

Entering an integer greater than "0" requires the specification

of sort conditions. For each sort condition, an attribute name:

53

and sort

are entered.

the 1lst attribute followed by the 2nd,

FOR CONDITION %CONDITION NUMBER% ENTER:
ATTRIBUTE NAME>
#ATTRIBUTE NAME%<CR>]

type:

1 FOR ASCENDING SORT OR
2 FOR DESCENDING SORT
2OPTION%LCR)

Sorting is performed by the specified sort order on

Jrd...nth sort attribute.

For ATTRIBUTE relations referenced in output templates only,

a replacement code is required:

This

rows

ENTER REPLACEMENT CODE:

- ADD ALL TUPLES AT ONCE

- REPLACE ALL TUPLES AT ONCE

- REPLACE ALL TUPLES EXCLUSIVELY AT ONCE

- ADD TUPLES ONE AT A TIME

- REPLACE TUPLES ONE AT A TIME

REPLACE TUPLES EXCLUSIVELY ONE AT A TIME

REPLACEMENT CONDE NUMBER%<CR>

RO W

are

replacement code affects only the BF command and the

replaced in a relation as determined by following

definitions.

1 - Rows

2 - Rows

4,

54

5,

PUTDATA subroutine as

are passed through the »
of the current relation.

arrays and are added to the end

PUTDATA subroutine as
the rows in the relation if they
are to be added than currently
added to the end of the current

passed through the
replace
more rows

rows are

are

and

If
new

arrays
exist.

exists,
relation.

as 2 except if the number of rows to be
is less than the number of rows in the current
the extra existing rows are deleted.

The sane
replaced
relation,

and 6 - the same as 1, 2, and 3 respectively, except
rows are passed 1in one at a time. Each call to a
FORMATTER subroutine replaces one row.

0K TO ENTER THE RELATION ZRELATION NAME% INTO THE
TEMPLATE

TRELATION NAME% (Y/N) (<CR>=Y):

4Y OR N%<CR>

An affirmative response stores the relation into the template
within the SYSTEM LIBRARY. If mistakes have been made in the
relation specification, a negative response disregards all
information for this relation from the template.
Here the loop for describing access to a relation ends with:
ENTER RELATION NAME (OR <CR> WHEN DONE):
At this point, another relation may be optionally specified for
the template. When all relations are specified, a <CR>
terminates the template definition.
ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
Another template may be defined by entering a new template

name. A <CR> terminates the BT command.

6.4 BF - To Build FORMATTER Routines
The term FORMATTER refers to conversion between database

format and program internal format (program variables). An input
FORMATTER routine (default name GETDATA_) retrieves data from the
database to store in program variables. An output FORMATTER
routine (default name PUTDATA) retrieves data from program
variables to store in the database. The information obtained
from the input and output templates determines the content and
structure of the FORMATTER GETDPDATA and PUTDATA routines, re-
spectively.

BF<CR>

ENTER TEMPLATE NAME

DR <CR> FOR ALL RELATIONS

OR "Q" TO QUIT

YTEMPLATE NAME%<LCR>

ENTER 1 IF INPUT TEMPLATE

OR 2 IF OUTPUT TEMPLATE
%0PTION%<KCR>

55

ENTER %GETNDATA OR PUTDATA% FILE NAME
OR "Q" TO RETURN WITHOUT WRITING A FILE
®FILE NAME%<CR>

The form of the file name prompt depends wupon whether the
template is of type input or output. The file name entered may
be any legal file name, including the complete directory path if
needed. If the file exists, options are provided to overwrite
the file or enter a new name.

Examples:BOXIN.FOR
TOAIDE:[EXAMPLE.SOURCEJBOXIN.FOR

In most database systems, attribute names must be unique
within a relation but can be duplicated in other relations. As
the attribute names are wused as FORTRAN variables in the
FORMATTER routines, they must be unique for a selected
template. For each set of duplicate attribute names within the
template, the following prompts appear allowing new unique names
to be entered:

THE FOLLOWING RELATIONS CONTAIN DUPLICATE
ATTRIBUTE/PARAMETER NAMES:

NUMBER RELATION NAME
1 ZRELATION NAMEY PATTRIBUTE NAME%
2 TRELATION NAME% #ATTRIBUTE NAMEY%

ENTER A UNIQUE FORTRAN VARIABLE NAME FOR EACH
OF THE ABOVE DUPLICATES (8 CHARACTERS MAXIMUM):

)\ TRELATION NAMEY% EATTRIBUTE NAME%
»NEW NAME%<CR>
2 %RELATION NAMEYZ LATTRIBUTE NAMEY

%NEW NAME% CCR>
OK TO ENTER NEW NAMES IN THE TEMPLATE? (Y/N)
%Y OR N%Z<CR>

56

Attribute names may be up to 8 characters in length. As the
character length for ANSI standard variables s only 6
characters, an option is available to rename any attribute names

of greater than 6 characters.

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<KCR>=N)
%Y OR N%<CRY

A negative response maintains existing attribute names. An
affirmative response results in the following prompts allowing
each attribute name greater than 6 characters to be renamed,

THE FOLLOWING NAMES ARE GREATER THAN 6 CHARACTERS
AND CANNOT REPRESENT AN ANSI STANDARD VARIABLE NAME
ENTER A NEW NAME (6 CHARACTER MAXIMUM):

NUMBER RELATION NAME

1 YRELATION NAME% YATTRIBUTE NAME%
AINEW NAME%KCR>

Variable names within programs may not match attribute names.
Although the recommended approach is to maintain consistency
between attribute names and FORMATTER variable names wherever
possible, the variable names can be changed to match the progranm

internal names.

N0 YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES?
(Y/N) (<CR>=N)
%Y OR N%<CR>

A negative response maintains existing attribute names. An
affirmative response results in the following prompts allowing
attributes to bhe renamed as FORMATTER variables.

ENTER CURRENT NAME OF PARAMETER/ATTRIRUTE TO CHANGE
OR "Q" TO QUIT

YATTRIBUTE NAME%CCR>

%NEW NAMEZLCR>

ENTER CURRENT NAME OF PARAMETER/ATTRIBUTE TO CHANGE
OR "Q" TO QUIT

Q<CR>

57

Attribute names within the database relations are never
changed during any renaming process. Comments in the FORMATTER
routine code link attribute names with the new FORTRAN variable
names. Subsequent executions of the BF command for the same
template uses these same new names without repeating the renaming
process.

The number of rows in a relation is virtually unlimited.
However, as attributes are stored in the FORMATTER routines as
arrays, a dimension must be supplied for each attribute relation

only (does not apply to parameters).

ENTER MAXIMUM NUMBER OF TUPLES TO BE REPLACED FOR
RELATION %RELATION%
%PROGRAM'S DIMENSION%ZCCRD

This information is not stored and must be reentered with

rach execution of the "BF" command for a given template.

6.5 BS - To Build A Schema Dump For Database

Through the BR and AR commands, descriptions of the database
schema are defined and stored in the SYSTEM LIBRARY. Execution
of the RS command produces a file containing the database schena
formatted for use in constructing the database.

BSCCR>
TNTER 1 FOR RIM SCHEMA
OR 2 FOR SDRC/PRL SCHEMA

#0PTION%CCR>

Option "1" produces a RIM command input file which must be read
by interactive RIM (the INPUT command) to create the database
schema. Option "2" produces FORTRAN code which must be compiled
and linked with a special RIM to PEARL conversion library and the

PEARL FORTRAN library to produce the datahase schema.

58

ENTER SCHEMA DUMP FILE NAME
OR "Q" TO RETURN WITHOUT WRITING A FILE
“FILE NAME%CCR>

Regardless of the selected option, information must be written to
a file, thus a file name must be supplied. 1f option "1" was
selected, the name must be no more than 6 characters with an
extension of .DAT. If option "2" was selected, the filename
should have the extension .FOR. Directory location can precede

the name.

Examples:
Option 1: SCHEMA.DAT
TOAINE - [EXAMPLE.CFG.DEFAULT JSCHEMA.DAT
Option 2: PRLSCH.FOR

TOAIDE:[EXAMPLE.CFG.DEFAULT]PRLSCH.FOR
1f the file exists, options are provided to overwrite the file or

enter a new name.

ENTER RELATION NAME FOR SCHEMA DUMP

OR <CR> FOR COMPLETE DATABASE SCHEMA DUMP
OR "Q" TO QUIT
{CR>

——

The schema for a single relation is dumped by entering a pre-
defined relation name. The recommended approach is to dump the

complete schema and create the complete database via one file.

6.6 BRV - To Build A REVIEWER Input File

The REVIEWER 1is a generic program for database review and
modification (Section 7.0). Although data are presented in two
standard farmats (parameter and attribute), choice of data
subsets for review 1S specified through the template. The

REVIEWER input file represents the means of transferring the

59

template information from the SYSTEM LIBRARY to the REVIEWER.

BRVLCR>
ENTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES
OR <CR> TO CREATE A LOCAL REVIEWER FILE

%DIRECTORY LOCATION%<CR>

When wusing the recommended EASIE directory structure [3] the
REVIEWER input file is transferred to the proper location by
entering:

TOAIDE:[%SYSTEMIN%.PROG]
[f not, a <CR> produces a local file. In either case, the name

of the file js:

ZTEMPLATE NAME%.REV

ENTER TEMPLATE NAME
OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES

OR "Q" TO QUIT
TEMPLATE NAME%<C>.

REVIEWER input files may be constructed for a single template by
entering the template name or for all defined templates by

entering a <CR>.

ROW MODIFICATION FLAG FOR RELATION RELATION OF TEMPLATE
RELATION:

0 - FULL MODIFICATION

1 - MODIFY BUT CANNOT ADD ROWS

2 - CANNOT MODIFY ROWS

BOPTION%ZCCRY

REVIEWER input files contain flags for modifying attribute type

data only that instruct the REVIEWER to modify as follows:

0 - Allow modification of any attributes in any row
including adding or deleting rows.

1 - Allow nodification of any attributes in any row
but do not allow rows to be added or deleted.

2 - Allow only data review; no modification.

While the flags are written, this capability is not implemented
in the current REVIEWER. Regardless of the selected option, the

REVIEWER acts as if the flag equals "0", These flags are not

60

saved in the SYSTEM LIBRARY and must he reentered with each

execution of BRYV,

6.7 - BP - To Build Program Description

The BP command is not required for integration/interfacing
of programs into a database system. However, if the completed
application program is to be recognized and executed by the EASIE
executive (4], this command must be executed for every
application.

More than one FORTRAN or DCL program may be identified and
executed as a single EASIE application. For this command, an
application is referenced as a procedure and a program as a
module. A procedure then consists of one or more modules to bhe
executed sequentually. This is not to be confused with the EASIF
procedure [4] which consists of one or more EASIE commands.

BPLCR>

ENTER NUMBER OF MODULES TO EXECUTE FOR THIS PROCEDURE >
ZNUMBER OF MODULES%CCRY

For example, if a single program is to be executed as an EASIE
application and is integrated with the database, the response is
"1t

If the same program is interfaced, producing a preprocessor
to read the database and format an input file, and a post
processor to read an output file and store data into the
database, the rosponse is "3",

ENTER PROCEDURE NAME >
%PROCEDURE NAME%Z<CR>

The procedure name is the name used for all EASIE application

commands,

61

Following this entry, a loop begins presenting a sequence of
prompts/responses to describe each module of the procedure:
FOR MODULE # 1 ENTER

NAME >
EMODULE NAME%<CR>

The module name is the file name of the FORTRAN executable file
or the NCL command procedure for this module.
LOCATION (FULL DIRECTORY STRUCTURE OR

CCR> IF SAME AS LAST MODULE) >
YD [RECTORY LOCATIONZ%ZLCR>

The module may be located anywhere on the disk system.

Example: TOAIDE:[%SYSTEMID%.PROG]
NUAQ:[TESTPROG]
¢CR> (1f the progran is in the current directory.)

Names should include the complete directory path including
logical disk name.
ENTER 1 FOR FORTRAN PROGRAM

OR 2 FOR COMMAND LANGUAGE PROCEDURE >
Y0PTION%<CR>

The module may be either a FORTRAN program or a DCL command

procedure.

ENTER INPUT TEMPLATE NAME >
YINPUT TEMPLATE NAME%<CR>
ENTER OUTPUT TEMPLATE NAME >
2QUTPUT TEMPLATE NAME%<CR>

Input and output template names are entered if they exist. If
not applicable, a <CR> is entered.

IS A CONFIGURATION REQUIRED? (Y/N <CR> = Y) >
7Y OR N%<CR>

1f the module interacts with a database or requires any type of
input/output other than from/to the interactive terminal, the

response is Y or <CR>. Otherwise the response is N,

62

ENTER NAME OF RESPONSIBLE PERSON OR
(CR> IF SAME AS LAST MODULE >
LINTEGRATOR'S NAME%<CR>

This entry exists only to record the name of the progranm
integrator.

This completes the loop of module description. The loop is
repeated for each module in the procedure. Following the last
module description is the prompt:

0K TO ENTER PROCENURE INTO PROGRAM DICTNRY? (Y/N CR>=Y)
%y OR N%<CR>

1f all entries are correct, the response is Y. I1f not, the
response 1is N and all module descriptions for the procedure are

discarded.

0K FOR NEW PROCEDURE? (Y/N CR>=Y) >
%Y OR N%<CR>

After the procedure is completely described, the opportunity
to describe another procedure is presented. An affirmative
response repeats the procedure description process. A negative
response ends the procedure descrjption process.

The procedure descriptions are stored in the SYSTEM
LIBRARY. For this information to be available to the EASIE
executive, @& file, PROGRAM.PGD must be written to the PROGUFD
area. (See WORKSPACE, EASIE Volume [I1.)

ok T0 OUTPUT PROGRAM DATA TO .PROG AREA? (Y/N <CR>=Y) O
%Y OR_N%<CRY.

A negative response will end the BP command. An affirmative

response will result in the prompt:

ENTER DIRECTORY LOCATION FOR PROGRAM DESCRIPTION FILES
OR <CR> TO CREATE A LOCAL PROGRAM DESCRIPTION FILE
%DIRECTORY LOCATION%<CR>

63

This entry must he the name of the PROGUFD directory used in the

system workspace.

6.8 PT - To Print A Template

The PT command may be used at any time to print a template.

6.9 LR - To List Relations

The LR command may be wused at any time to 1list all

relations.

6.10 PR - To Print A Relation

The PR command may be used at any time to print a relation.

64

7.0 REVIEWER REFERENCE GUIDE

The REVIEWER is a generic program for reading, displaying,
modifying, and retrieving/storing selected data from/into 4
database. The selection of data is accomplished via the REVIEWER
input file created by the BRV command. The REVIEWER is designed
to be executed from within the EASIE executive [4] but may be
executed independently. To execute the REVIEWER standalone, the
database mnust be in the current directory. A file named
AIDE%terminal name%.TRM is created in the directory above the
current directory and may be deleted after execution of the
REVIEWER.

Data are presented by the REVIEWER in categories. A
category is a subset of a relation. A subset can be anyone of
three options specified 1in the template. These options are:
(1) some or all parameters; (2) some or all attributes; and (3)
some or all rows for attribute relations. Figure 8 is an example
of category display for parameter relations. Figure 9 s an
example of categdry display for attribute relations.

Notice that for parameter relations, values, names,
subscripts, descriptions, and units are available with each
display. Character values, descriptions, and units may be
truncated. For attribute relations, only values are directly
displayed. Character values may be truncated. Complete values,
names, Ssubscriptsy descriptions, units, and data types are
availahle with the expand (X) command.

A command menu follows the data display for the current
category. Once this menu is mastered, it is helpful to toggle (T

command) the menu off allowing a larger data display on the

65

terminal screen. The REVIEWER commands are described in the
following subsections. The commands are similar for parameter
and attribute relations. Each command is described with
differences pertaining to the relation type being identified as

required.

7.1 MODIFY Command, M
Parameter use:
Mn : modify value (n = line#,name(subscript),or line range)
Attribute use:

Mrc : modify value {r = row# or range;
¢ = column#,name(subscript), or range)

The MODIFY command alters category data locally to the
REVIEWER, The altered data may be optionally replaced in the
database when changing categories or exiting the REVIEWER.
Parameters are identified by names or line numbers. A line is a
parameter or an element of a multi-dimensional parameter.
Elements of attribute categories must be identified by both row
number and either name or column (attribute) number. After
entering a MODIFY command (including <CR>) the following prompt
appears.
ENTER NEW VALUE:

The new value is then entered. Alternatively, the new value can
be appended to the MODIFY command. Using this method, text
strings with embedded blank characters must be enclosed in single
quotes (').
Examples:

Modify the parameter, NAME, to NEW NAME where 1 is the line

number of NAME:

66

M 1<CR>
ENTER NEW VALUE:
NEW NAMECR>

M 1 ‘NEW NAME'<CR>

Modify the parameter NAME to NEWNAME :

M NAME<KCR>
ENTER NEW VALUE:
NEWNAME <CR>

M NAME NEWNAMECCR>

Modify row 2 column 3 to 10:
M 2 3<CR>
ENTER NEW VALUE:
10<CR>

M 2 3 10 <CR>

Modify row 2 column name FACE(3) to 10:

M 2 FACE(3)<CR>
TNTER NEW VALUE:
10<CR>

M 2 FACE(3) 10<CR>

Line, row, or column numbers may be replaced by a range
specification to modify more than one element with a single
command. In a range specification, arguments are delimited by a
comma(,). Arguments separated by a colon(:) indicate all numbers
in the range (inclusively) are to be included.

Examples:

Modify parameter line numbers 3,9,5,6, and 7:

M 3,9,5:7<CR>

Modify rows 8,2,3,4,5, and 1, and columns 8,9,10,11, and 12:

M 8,2,3:5,1 8:12<CR>

67

7.2 CHANGE CATEGORY Command, C
'C n : change category (n = id or name)

When the REVIEWER is executed, the initial display is of the
first category specified in the template. The display is changed
to a different category by the CHANGE CATEGORY command., The new
category is specified by the category number or name, The name
is the relation name in the template. The number is the order of
the relation in the template. Numbers and names can be displayed
with the LIST CATEGORIES (CAT) command.

Examples:
Change to category 7
C 7<CR>
Change to category FACES

C _FACESKCR>

If data have been modified in the current category, an option is
present to replace the data in the database:
OK TO REPLACE CHANGES? (Y) >
An affirmative response or <CR> replaces the data. A

negative response discards all modifications for this category.

7.3 NEXT PAGE Command, N

N-n : next page (n = + or - pages)
A fixed number of 1lines (default of 20) are displayed on the
terminal screen (page). If the number of lines (or rows) in the
current category exceeds this fixed number, subsequent rows are
displayed via the NEXT PAGE command. The parameter represents a

page number relative to the current page.

68

Examples:
Lines 1:20 are initially displayed.
N_1<eR>
Displays lines 21:40.
N 3<CR>
NDisplays lines 81:100,

N -2¢CR>

Nisplays lines 41:60.

7.4 REPRINT PAGE Command, R

R : reprint page
The REPRINT PAGE command redisplays the current page of data
reflecting data modifications. The display reflects
modifications, but these are not stored in the database until the

category is changed or the REVIEWER is exited,

7.5 LINES PER PAGE Command, L
L'n :n line#'s per page
The default number of parameter lines or attribute rows is 20,
This value is changed with the LINES PER PAGE command.
Example:

Display 10 lines per page.

7.6 EXPAND DISPLAY LENGTH Command, X
Parameter use:

X n : expand line# n

69

Attribute use:
X r ¢ : expand row# n, column# ¢
Recause of screen size limitations, éome jinformation is not
available from the REVIEWER page display. For parameters,
character values exceeding 16 characters, descriptions exceeding
16 characters, and units exceeding 10 characters are truncated.
fFor attribute data, character values exceeding 16 characters are
truncated. Descriptions and units are not displayed. This
information along with parameter/attribute types, character
length when character type, and dimensions, is available through
the EXPAND DISPLAY LENGTH comnand.
Parameter Exanple:
Expand parameter line number 1:
X_1<CRY

results in the output:

NAME t TYPE ! CHARS ! SUBSCRIPT CUNIT
NAME ! CHAR ! 80 ! !
DESCRIPTION:

MONEL NAME

VALUE:

TEST OF MAKGEO FOR FIGURE 8
Attribute Example:
Expand row 3 column 2:

X 3 2<CR>

results in the output:

NAME I TYPE ! CHARS ! SUBSCRIPT I UNIT
FACE I INT ! ! 2 !
DESCRIPTION:
FACE CONNECTIVITY (NODE 1 To 2 70 3 70 4 (OR TO 1 IF 4=0)
TO 1)
VALUE :
5

Names may be used in place of line or column numbers.

0

7.7 SET COLUMNS Command, S

S : set columns to be displayed
The SET COLUMNS command pertains only to attribute categories.
This command may be used in either of two modes. [f an integer
parameter follows the S (separated by a space) the display is
shifted that number of columns. Positive integers shift to the
right and negative integers shift to the left.
Example:

- If the first six columns are displayed:

displays columns 7:12. Any positive integer greater than the
number of remaining columns to the right results in a display of
the last 6 columns. Any negative integer less than the number of
remaining columns to the left results in a display of the first 6
columns.
If no integer follows the "S", the option:

NESIGNATE THE COLUMNS OF INTEREST

"*" INDICATES ALL COLUMNS

" IS DELIMITER RETWEEN COLUMNS

""" INDICATES A RANGE OF COLUMNS

<CR> NESCRIBES NO COLUMNS
provides a review of the attributes in the current category. An
asterisk(*) indicates all attributes are to be reviewed while
commas and colons are used to express a range of attributes.
(Section 7.1 provides an explanation of range.) A <CR> bypasses

the attribute review.

Sample output from the attribute review follows:

CoL ' NAME ! TYPE ! CHAR ! DIMENSION ! UNIT DESCRIPTION
11X ! REAL ! 0! ! M X COORDINATE
2 1y ! REAL ! n ! ! M Y COORDINATE
317 ! REAL ! 0! ! M Z COORDINATE

/1

Following the attribute review, the option
DESIGNATE THE COLUMNS TO DISPLAY
¢CR> INNICATES ALL COLUMNS
“," IS DELIMITER BETWEEN COLUMNS
“." INDICATES A RANGE OF COLUMNS
provides a selection of columns for display. A range of columns
is specified. Alternatively, a <CR> displays the first 6

columns.

7.8 END COMMAND, E
E : end and save mods
The END command replaces any modifications for the current

category only and terminates execution of the REVIEWER.

7.9 QUIT Command, Q
N : quit without saving mods
The OUIT command terminates the REVIEWER discarding any

modifications made to the current category.

7.10 HELP command, H
H : help

The HELP command is not implemented at the present time.

7.11 LIST CATAGORIES Command, CAT

CAT : list categories
The LIST CATEGORIES command provides a map of category
identification numbers (order of relations in the template) and
category names for the current template to be used with the

CHANGE CATEGORY (C) command.

72

Example:
CATCCR>

DESIGNATE THE CATEGORIES OF INTEREST
“x" INDICATES ALL CATLGORTES

"," IS DELIMITER BETWEEN CATEGORIES
":" INDICATES A RANGE OF CATEGORIES

xR
ID CATEGORY CATEGORY DESCRIPTION
1 MODEL MODEL INFORMATION
2 NODES NODE POINT COORDINATES
3 FACES CONNECTIVITY OF NODES TO FORM FACES

7.12 DEFINE REVIEW SUBSET Command, SUB
SUR : define review subset

The DEFINE REVIEW SUBSET command capability is not implemented.

7.13 TOGGLE command, T

T : toggle menu
By default, the menu is displayed with each page. Entering the
TOGGLE MENU command deletes the menu from subsequent pages.

Entering the TOGGLE MENU command again restores the menu display.

7.14 Error Messages
Entering an illegal range for line numbers, rows or columns
results in the output:

ERROR IN RANGE SPECIFICATION - TRY AGAIN:
NOT A VALID COMMAND, PLEASE MONI[FY COMMAND

and the command is ignored.
Entering a range of line numbers or rows of different types
for modification results in the output:
ERROR - ALL %PARAMETERS OR ATTRIBUTES% IN RANGE ARE NOT

OF THE SAME TYPE
NOT A VALIND COMMAND, PLEASE MODIFY COMMAND

73

and the command is ignored.

Entering any other illegal command results in the output:

NOT A VALID COMMAND,

and the command is ignored.

74

PLEASE MODIFY COMMAND

CATEGORY 1: MODEL
MODEL INFORMATION

o o = " - e " - W e N NN e e E e EESGE s S mAS S eSS mE S S S e

L ! PRESENT VALUE ! NAME ! SUBSCRIPT ! DESCRIPTION 1 UNITS
1 ' TEST OF MAKGEO F ! NAMEt ! ! MODEL NAMI !
2 ! 20.0000000 ! ROTATION ! 1 ! MODEL X,Y,Z ROTA ! DEGREES
3! 30,0000000 ! ! 2 ! !
4 ! 40,0000000 ! ! 3 ! !

P AP it K Rk R ol ad i ettt el e et

n : medify value (n = line#,name(subscript),or line range)

n : change category (n = id or name)

: next page (n = + or - pages)

: reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu
EDIT:

>

V2Z2OXR
e

Figure 8. - REVIEWER DISPLAY OF PARAMETER DATA

CATEGORY 3: FACES

CONNECTIVITY OF NODES TO FORM FACES
NAME ! FACE ! FACE I FACE | FACE
INDEX ! 1 ! 2 ! 3 ! 4
coL ! 1 ! 2 ! 300 4
ROW

1! 1! 2 ! 3! 4

2! 2 ! 6 ! 7! 3

3! 6 ! 5 1 8 ! 7

4! 5 1 11 4 | 8

5! 4 ! 3! 71 8

6! 51 6 ! 2 ! 1
Mrc : modify value(r= row# or range; c= column#,name(subscript), or range)
C n : change category {(n = id or name)
N n : next page (n = + or - pages)
kK : reprint page, L n : n rows per page, X r c : expand row# n, column# c
S : set colunns to be displayed
E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUR : define review subset, T : toggle menu
EDIT:
>

Figure 9. - REVIEWER Display Of Attribute Data

75

APPENDIX A
USE OF THE SYSTEM LIBRARY PROCESSOR FOR THE COMPLEX EXAMPLE

SRUNDICTCCRY

ENTER NUMBER OF CHARACTER/WORD FOR TARGET SYSTEM:
4 FOR RIM ON PRIME/VAX
10 FOR RIM ON NOS
2 FOR SDRC/PRL

4<CR>

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

BR<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
NODES <CR>

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE
2¢R>

ENTER RELATION DESCRIPTION (80 CHARACTERS):
NODE POINT COORDINATES<CR>

ENTER YOUR NAME (20 CHARACTERS):
JOHN DOELCR>

DEFINE THE RELATION NODES

ENTER ATTRIBUTE NAME (OR <CR> WHEN NONE)>
X<CR>

APPENDIX A

ENTER ATTRIBUTE TYPE>
R<CR>

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
1<CR>

DIMENSION = 1
ENTER ATTRIBUTE DESCRIPTION>
X COORDINATEKCR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
M<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

OK TO ENTER THE ATTRIRUTE X INTO THE DATA BASE (Y/N) (<CR>=N):

Y<CR>

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
Y<CR>

ENTER ATTRIBUTE TYPE>
R<CR>

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATEN BY COMMAS)>
1<CR>

DIMENSION =1
ENTER ATTRIBUTE DESCRIPTION>
Y COORDINATECR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
M<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

0K TO ENTER THE ATTRIBUTE Y INTO THE DATA BASE (Y/N) (<CR>=N):

Y<CR>

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
Z<CR>

ENTER ATTRIBUTE TYPE>
R<CR>

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
1<CR>

APPENDIX A

NIMENSION = 1 '

ENTER ATTRIBUTE DESCRIPTIOND
7_CONRNINATE <CRY

ENTER UNIT OF MEASUREMENT (<CR> IF N/AY>
MCRY

ENTER OUTPUT FORMAT (<CR> IF N/AY>
<CR>

0K TO ENTER THE ATTRIBUTE Z INTO THE DATA BASE (Y/N) (<CR>=N):
Y<{CR>

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
FACES<CR>

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE
2¢R>

ENTER RELATION DESCRIPTION (80 CHARACTERS):
CONNECTIVITY OF NOPES TO FORM FACES<CR>

NEFINE THE RELATION FACES

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
FACE<ER>

ENTER ATTRIBUTE TYPED
TR

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
4<CR>

DIMENSION = 4
ENTER ATTRIBUTE DESCRIPTIOND
FACE CONNECTIVITY (NODE 170 2 70 370 4 (OR TO 1 TF 4=0) T0 1)<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
<CR>

ENTER OUTPUT FORMAT (<CR> IF N/AY>
<CR>

APPENDIX A

0K TO ENTER THE ATTRIBUTE FACE INTO THE DATA BASE (Y/N) [<CR>=N):
Y<CR>

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
<CR>

———

ENTER RELATION NAME (OR <CR> WHEN DONE):
MODEL <CR>

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIRUTE TYPE
1Ry

ENTER RELATION DESCRIPTION (80 CHARACTERS):
MODEL INFORMATION<CR>

DEFINE THE RELATION MODEL

ENTER PARAMETER NAME (OR <CR> WHEN DONE)>
NAME <CR>

ENTER PARAMETER TYPE>
C<CR>

ENTER NUMBER OF CHARACTERS IN STRING)
80<CR>

ENTER PARAMETER DIMENSION (UP TO 3 SEPARATED BY COMMAS) >
1<CR>

DIMENSION = 1
ENTER PARAMETER DESCRIPTION)
MODEL NAME<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
CR>

ENTER DUTPUT FORMAT (<CR> IF N/A)>
<CR>

OK TO ENTER THE PARAMETER NAME INTO THE DATA BRASE (Y/N) (<CR>=N):
Y<CRD

ENTER PARAMETER NAME (OR <CR> WHEN NONE)>
ROTATION<CR>

ENTER PARAMETER TYPE>
R<CR>

APPENDIX A

ENTER PARAMETER NDIMENSION (UP TO 3 SEPARATED BY COMMAS)>
3<CR>

DIMENSION = 3
ENTER PARAMETER DESCRIPTIOND
MODEL X,Y,Z ROTATIONS RESPECTIVELY<LCR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
DEGREES<CR>

ENTER OUTPUT FORMAT (<KCR> IF N/A)>
<CR>

OK TO ENTER THE PARAMETER ROTATION INTO THE DATA BASE (Y/N) (<CR>=N):
Y<CR>

ENTER PARAMETER NAME (OR <CR> WHEN DONE)>
<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
<CR>

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TN AN EXISTING RELATION

RT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE

RP - TO BUILD PROGRAM NESCRIPTION

PT - TO PRINT A TEMPLATE
LR - TO LIST RELATIONS
PR - TO PRINT A RELATION
X - T0 EXIT

BT<CR>

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
MAKGEOIN<CR>

ENTER 1 IF INPUT TEMPLATE
OR 2 IF OUTPUT TEMPLATE
1<CR>

IDENTIFY ALL INPUT RELATIONS FOR THE TEMPLATE

APPENDIX A
ENTER RELATION NAME (OR <CR> WHEN DONE):
DIMEN<LCR>

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

1<CR>

THE RELATION DIMEN IS ALREADY DEFINED AND HAS 4 PARAMETERS.
DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):

N<CR>

ENTER O IF ALL PARAMETERS ARE TO BE RETRIEVED

OR 1 TO READ PARAMETERS TO BE RETRIEVED FROM A FILE

OR 2 TO ENTER PARAMETERS TO BE RETRIEVED FROM THE TERMINAL
2<CR>

ENTER PARAMETER NAMES EACH FOLLOWED BY <CR>:
(PARAMETER NAME=<CR> WHEN DNONE)

LENGTHLCR>

WIDTH<CR>

HETGHT<CR>

<CR>

YOU HAVE IDENTIFIED 3 PARAMETERS TO BE RETRIEVED
OK TO ENTER THE RELATION DIMEN INTO THE TEMPLATE MAKGEOIN (Y/N) (<CR>=N):
Y<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
<CR>

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
MAKGEQOT<CR>

ENTER 1 IF INPUT TEMPLATE
OR 2 IF QUTPUT TEMPLATE
2<CR>

IDENTIFY ALL OUTPUT RELATIONS FOR THE TEMPLATE

ENTER RELATION NAME (OR <CR> WHEN NONE):
NODES<CR>

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE
2¢eR>

APPENDIX A

THE RELATION NODES IS ALREADY DEFINED AND HAS 3 ATTRIBUTES.
N0 YOU WANT TO SEE THEM (Y/N) (<CR>=N):
N<CR>

ENTER O IF ALL ATTRIBUTES ARE TO BE REPLACED
OR 1 TO READ ATTRIBUTES T0O BE REPLACED FROM A FILE
QR 2 TO ENTER ATTRIBUTES T0 BE REPLACED FROM THE TERMINAL

0<CR>

ENTER NUMBER OF CONDITIONS IN THE "WHERE" CLAUSE
OR O FOR NO CONDITIONS
0<CR>

ENTER NUMBER OF CONDITIONS 1IN THE "SORT" CLAUSE
OR O FOR NO CONDITIONS
0<CR>

ENTER REPLACEMENT CODE:

1 - ADD ALL TUPLES AT ONCE

2 - REPLACE ALL TUPLES AT ONCE

3 - REPLACE ALL TUPLES EXCLUSIVELY AT ONCE
4 - ADD TUPLES ONE AT A TIME
5
6
3

- REPLACE TUPLES ONE AT A TIME
- REPLACE TUPLES EXCLUSIVELY ONE AT A TIME

0K TO ENTER THE RELATION NODES INTO THE TEMPLATE MAKGEOOT (Y/N) (<CR>=N):
Y<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
FACES<CR>

e e et

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

2<CR>
THE RELATION FACES IS ALREADY DEFINED AND HAS 1 ATTRIBUTES.
DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):
N<CR> ,
ENTER O IF ALL ATTRIBUTES ARE TO BE REPLACED
OR 1 TO READ ATTRIBUTES TO BE REPLACED FROM A FILE
OR 2 TO ENTER ATTRIBUTES TO BE REPLACED FROM THE TERMINAL
0<CR>

ENTER NUMBER OF CONDITIONS IN THE "WHERE" CLAUSE
OR 0 FOR NO CONDITIONS
0<CR>

APPENDIX A

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR O FOR NO CONDITIONS

0CR)

ENTER REPLACEMENT CODE :

1 - ADD ALL TUPLES AT ONCE

2 - REPLACE ALL TUPLES AT ONCE

REPLACE ALL TUPLES EXCLUSIVELY AT ONCE

ADD TUPLES ONE AT A TIME

REPLACE TUPLES ONE AT A TIME

REPLACE TUPLES EXCLUSIVELY ONE AT A TIME

<CR>

[}

3
4
5
6
3

0K TO ENTER THE RELATION FACES INTO THE TEMPLATE MAKGEOOT (Y/N) (<CR>=N):

YR

ENTER RELATION NAME (OR <CR> WHEN DONE) :
<CR>

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
NRAWINKCRY

ENTER 1 IF INPUT TEMPLATE
OR 2 IF OUTPUT TEMPLATE
1<CR>

IDENTIFY ALL INPUT RELATIONS FOR THE TEMPLATE
ENTER RELATION NAME (OR <CR> WHEN DONE):
MODEL <CR>

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

1<CR>

THE RELATION MODEL IS ALREADY DEFINED AND HAS 2 PARAMETERS.
DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):

NCCRY

ENTER O IF ALL PARAMETERS ARE TO BE RETRIEVED

OR 1 TO READ PARAMETERS TO RE RETRIEVED FROM A FILE

OR 2 TO ENTER PARAMETERS TO BE RETRIEVED FROM THE TERMINAL
0<CR>

OK TO ENTER THE RELATION MODEL INTO THE TEMPLATE DRAWIN (Y/N) (KCR>=N):

Y<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
NODES<CR>

A-8

APPENDIX A

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

2<CR>
THE RELATION NODES IS ALREANY DEFINED AND HAS 3 ATTRIRUTES.
N0 YOU WANT TO SEE THEM (Y/N) (<CR>=N):
N<CR>
ENTER 0 IF ALL ATTRIBUTES ARE T0 BE RETRIEVED
OR 1 TO READ ATTRIBUTES TO RE RETRIEVED FROM A FILE
OR 2 TO ENTER ATTRIBUTES TO BE RETRIEVED FROM THE TERMINAL
0<CR>

ENTER NUMBER OF CONDITIONS IN THE “"WHERE" CLAUSE
OR O FOR NO CONDITIONS
OCR>

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR O FOR NO CONDITIONS
0CR>

OK TO ENTER THE RELATION NODES INTO THE TEMPLATE DRAWIN (Y/N) (KCR>=N):
YR

ENTER RELATION NAME (OR <CR> WHEN DONE) :

FACESKCR>

ENTER 1 FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPF

2<CR>
THE RELATION FACES IS ALREADY DEFINED AND HAS 1 ATTRIBUTES.
DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):

N<CRY

ENTER O IF ALL ATTRIBUTES ARE TD BE RETRIEVED

OR 1 TO READ ATTRIBUTES TO RE RETRIEVED FROM A FILE

OR 2 TO ENTER ATTRIBUTES TO BE RETRIEVED FROM THE TERMINAL
0<CR>

ENTER NUMBER OF CONDITIONS IN THE "WHERE™" CLAUSE
OR O FOR ND CONDITIONS
0<eR>

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR O FOR NO CONDITIONS
oR>
OK TO ENTER THE RELATION FACES INTO THE TEMPLATE DRAWIN (Y/N) (<CR>=N):
YLCR>

APPENDIX A

ENTER RELATION NAME (OR <CR> WHEM NONE):
R

[NTER TEMPLATI NAME (OR <CR> WHEN DONE)
CR>

SELECT OPTION:

BR - TO BUILD RELATIONS '

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
RP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - T0O EXIT

BSKCR>

ENTER 1 FOR RIM SCHEMA
OR 2 FOR SDRC/PRL SCHEMA
1<CR>

——— et

ENTER SGHEMA DUMP FILE NAME
OR "Q" TO RETURN WITHOUT WRITING A FILF
SCHEMA.DATXCR >

ENTER RELATION NAME FOR SCHEMA DUMP
OR <CR> FOR COMPLETE DATABASE SCHEMA DUMP
OR "Q" TO QUIT

CR>

SELECT OPTION:

BR - TO RUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
gP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

BF<CR>

A-10

APPENDIX A

[NTER TEMPLATE NAME

(JR <CR> FOR ALL RELATIONS
OrR "0" TO QUIT
MAKGEOINLKCR>

ENTER GETDATA FILE NAME
OR "D" TO RETURN WITHOUT WRITING A FILE

MAKGEOIN.FOR<CRY

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
N<CR>

DO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES? (Y/N) (<CR>=N)
N<CR>

SELECT OPTION:

RR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO RUILD A TEMPLATE

RF - TO BUILD FORMATTER ROUTINES

RS - TO BUILD A SCHEMA DUMP FOR DATA RASE
BRV - TO BUILD A REVIEWER INPUT FILE
RP - TO BUILD PRNGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

RF<CRY

ENTER TEMPLATE NAME

OR <CR> FOR ALL RELATIONS
OR "Q" TO QUIT

MAKGEQOT <CR>

ENTER PUTDATA FILE NAME
DR Q" TO RETURN WITHOUT WRITING A FILE

MAKGEQOT.FORCCRY

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
N<CR>

DO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES? (Y/N) (<CR>=N)
N<CR>

ENTER MAXIMUM NUMBER OF TUPLES TO BE REPLACED FOR RELATION NODES
8<CR>

ENTER MAXIMUM NUMBER OF TUPLES TO BE REPLACED FOR RELATION FACES
6 <CR>

APPENDIX A

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILN A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - T0 EXIT

BF <CR>

ENTER TEMPLATE NAME
OR <CR> FOR ALL RELATIONS

OR Q" TO QUIT

DRAWINKCR

ENTER GETDATA FILE NAME

OR "Q" TO RETURN WITHOUT WRITING A FILE
DRAWIN. FOR<CR>

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
N<CR>

NO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIRUTES? (Y/N)} {<CR>=N)
N<CR>

ENTER MAXIMUM NUMBER OF TUPLES TO BE RETRIEVED FOR RELATION NODES
100<CR>

ENTER MAXIMUM NUMBER OF TUPLES TO BE RETRIEVED FOR RELATION FACES
100<CR>

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - T0 EXIT

BRV<CR>

APPENDIX B
SOURCE CODE FILES

THE PROGRAM MAKGEQO AS CONTAINED IN THE FILE MAKGEO.FOR:

PROGRAM MAKGEO

C
COMMON /INDIMEN/ LENGTH,WIDTH,HE IGHT
REAL LENGTH
COMMON /OUTGEO/ X(8),Y(8),Z(8),NG,FACE(4,6),NF
INTEGER FACE

c
CALL GETDATA

c
NG = 8
NF o= 6
HL = LENGTH/2.
HW = WIDTH/2.
HH = HEIGHT/2.

c
X(1) = -HL
Y(1) = -HH
2(1) = -HW
X(2) = HL
Y(2) = -HH
2(2) = -HW
X(3) = HL
Y(3) = HH
2(3) = -HW
X(4) = -HL
Y(4) = HH
2(4) = -HW
X(5) = -HL
Y(5) = -HH
2(5) = HW
X(6) = HL
Y(6) = -HH
7(6) = HW
x(7) = HL
Y(7) = HH
Z(7) = HW
X(8) = -HL
Y(8) = HH
2(8) = HW
FACE(1,1) = 1
FACE(2,1) = 2
FACE(3,1) = 3
FACE (4,1) = 4
FACE(1,2) = 2
FACE(2,2) = 6
FACE(3,2) = 7
FACE(4,2) = 3
FACE(1,3) = 6
FACE(2,3g =5
FACE(3,3) = 8 N

APPENDIX B

7514843785621
L | (O (I T T R T fH

,,,,,,,,, "~ = L}
4123412341234
St St (((((((((((
EEEFEEEEEEEEE
LQLLLLLLCLCULOLOOLOOL
AAAAAAAAAAAAA
FFFFFFFFFFFFF

CALL PUTDATA

END

B-2

APPENDIX B

THE SUBROUTINE GETDATA__ FOR USE WITHIN MAKGEOIN.FOR

SUBROUTINE GETDATA

COMMON /DBNAME / DBASE_,DBOPN_
REAL*8 DBASE
LOGICAL DROPN_

C

Cx** THE PARAMETERS FOR THE RELATION DIMEN ARE:
REAL LENGTH
REAL WINTH
REAL HE TGHT

C
¢ LOAD REQUIRED COMMON BLOCKS HERE:
c
INCLUDE ‘MAKGEOIN,COMMON/LIST'
DBASE_ = (BHDATADR)
C
CALL R1001 (LENGTH,WIDTH,HEIGHT)
C
¢ MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:
C
C INCLUDE 'MAKGEOIN,ASSIGN/LIST'
C
RETURN
c
END

APPENDIX B

THE SUBROUTINE PUTDATA _ FOR USE WITHIN MAKGEOOT. FOR
SUBROUT INE PUTDATA

C
COMMON /DBNAME_/ DBASE_,DBOPN _
REAL*8 DBASE
LOGICAL DBOPN
C
C*** THE ATTRIBUTES FOR THE RELATION NODES ARE:
REAL X (8)
REAL Y (8)
REAL Z (8)
C*** THE ATTRIBUTES FOR THE RELATION FACES ARE:
INTEGER FACE | 4, 6)
C .
C LOAD REQUIRED COMMON BLOCKS HERE:
C
INCLUDE 'MAKGEOOT.COMMON /L [ST"
DBASE_ = (8HDATADB)
C
C MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:
c
c INCLUDE 'MAKGEOOT.ASSIGN/LIST"
C
CALL W1001_(X,Y,Z,N001)
CALL W1002”(FACE,NO02 Y
C
RETURN
C
END

CONTENTS OF THE FILE MAKGEO. COM

$FOR MAKGEOD.FOR

$FOR MAKGEOIN, FOR

SFOR MAKGEQOT.FOR

SLLINK MAKGED.0BJ -
+MAKGEQIN,0BJ -
+MAKGEOOT. 0BJ -
+LOADRIM/LIB

O

APPENDIX B

THE FILE DRAWIN.FOR MODIFIED AS NEEDED:

SUBROUTINE GETDATA

COMMON /DBNAME_/ DBASE_,DBOPN_
REAL*8 DBASE
LOGICAL DBOPN_

c
C*** THE PARAMETERS FOR THE RELATION MODEL

CHARACTER™ 80 NAME
REAL ROTATION(

3)
Ckxx THE ATTRIBUTES FOR THE RELATION NODES
100)

REAL X (
REAL Y (100)
(100)

REAL z
cxx* THE ATTRIBUTES FOR THE RELATION FACES

OO0

OO0

OO

INTEGER FACE (4, 100)
LOAD REQUIRED COMMON BLOCKS HERE:

INCLUDE 'DRAWIN.COMMON/LIST’
DBASE_ = (BHDATADR)

CALL R1001 (NAME,ROTATION)
CALL R1002_(X,Y,Z,N002)
CALL R1003(FACE,N003_}
MAKE ANY NECESSARY RE-ASSTGNMENTS HERE:
INCLUDE 'DRAWIN.ASSTGN/LIST
RETURN

END

ARE :

ARE :

ARE:

APPENDIX B

CONTENTS OF THE FILF DRAWIN,ASSIGN:

CONVERT ROTATION FROM DEGREES TO RADIANS:

[N e}

NEGRAD = 3.141592654 /180,
N0 10 1=1,3
ROTATION(I) = ROTATION(I) * DEGRAD
10 CONTINUE

WRITE DATA TO INPUT FILE 'DRAW.DAT':

OO0

OPEN(8, FILE="'DRAW, DAT‘ » STATUS = 'UNKNOWN")
WRITE (8, (A)') NAM

WRITE (8, (3£12,4)") (ROTATION(I),1=1,3)
WRITE(8,'(I5)") N o

WRITE (8, ' (351? 4) TX(I Y(1),2(1),1=1,N002)
WRITE(8,"(15)") NOO3 -
WRITEg ' (415)") ((FACE(J,1),9=1,4),1-1,N003)
CLOSE (8) =

CONTENTS OF THE FILE DRAWIN. COM:

SFOR DRAWIN.FOR
$LINK DRAWIN.OBRY -
+LOADRIM/L IR

APPENDIX C
TEMPLATE MAKGEOIN

TO ESTARLISH VALUES FOR LENGTH, WIDTH AND HETGHT

$REVIEW MAKGEOINCCR>

CATEGORY 1: NIMEN
BOX NIMENSIONS
L | PRESENT VALUE ! NAME ! SUBSCRIPT ! DESCRIPTION I UNITS
1! 0.0000000 ! LENGTH ! ! BOX LENGTH I'M
2 ! 0.0000000 ! WIDTH ! I BOX WIDTH I'M
30 0.0000000 ! HEIGHT ! ! BOX HEIGHT I'M

M n : modify value (n = line#,name(subscript),or line range)
C n : change category (n = id or name)
N n : next page (n = + or - pages)
R : reprint page, L. n :n line#'s per page, X n : expand line# n
£ . end and save mods, Q : quit without saving mods, H : help
CAT : list categories, SUB : define review subset, T : toggle menu
EDIT:
> M LENGTH 1<KCR>
> <CR>
> M HEIGHT 3<CR>
> R<CR>
CATEGORY 1: NIMEN
BOX DIMENSIONS
L | PRESENT VALUE ! NAME ! SUBSCRIPT ! DESCRIPTION I UNITS
11 1.0000000 ! LENGTH ! ! BOX LENGTH I'M
2 1 2.0000000 ! WIDTH ! I BOX WIDTH I M
3! 3.0000000 ! HEIGHT ! I BOX HEIGHT I'M

----——_---——---_---—-—----—-—-_————-—-—-_------—-—------——-—_—-—---_--—-—---_-

M n : modify value (n = line#,name(subscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n i n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:
> E<CR>

APPENDIX D
TEMPLATE DRAWIN

TO ESTABLISH VALUES FOR NAME AND ROTATIONS
SREVIEW DRAWINKCR>

CATEGORY 1: MODEL
MODEL INFORMATION
L ! PRESENT VALUE ! NAME ! SUBSCRIPT | DESCRIPTION ! UNITS
1! ! NAME ! ! MODEL NAME !
2 ! 0.0000000 ' ROTATION ! 1 ! MODEL X,Y,Z ROTA ! DEGREES
3! 0.0000000 ! ! 2 ! !
4 ! n.0000000 ! ! 3 ! !
M n : modify value (n = line#,name(subscript),or line range)
C n : change category (n = id or name)
N n : next page (n = + or - pages)
R : reprint page, L n : n line#'s per page, X n : expand line# n
E : end and save mods, Q : quit without saving mods, H : help
CAT : list categories, SUB : define review subset, T : toggle menu
ENIT:
> M 1 'TEST BOX'<CR>
> M 2 20<CR>
> M 330>
> M T I0CR>
> RLCRD g
CATEGORY 1: MODEL
MODEL INFORMATION
L ! PRESENT VALUE ! NAME I SUBRSCRIPT ! DESCRIPTION ! UNITS
1 ! 'TEST BOX' ! NAME ! | MODEL NAME !
2 | 20.0000000 ! ROTATION ! 1 ! MODEL X,Y,Z ROTA ! DEGREES
3! 30.0000000 ! ! 2 ! !
4) 40,0000000 ! ! 3 ! !

O M n D n n S R R TP W D M R M D MR P D 4T W D LN WP D R R W D M D m S W N e D D D G S e N e S AR P 4R 4P WP R R R AN MR AR e S e W M S R A e = en e

Mn : modify value (n = line#,name(subscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu
EDIT:

> ECRY

$

D-1

APPENDIX E
BUILD EASIE

Version 1.0 for YAX/VMS Running EASTE With RIM

(You should have a good knowledge of FASIE before attempting to
uyse this program)

BUILD_ﬁASIE ijs a wutility progran designed to aid in the
installation of programs into the Environment for Application
Software Integration and Execution (EASTE). When the
construction of large numbers of relations would make the
interactive processor RUNDICT tedious to use, BUILD_ﬁASIE
provides an easy-to-use alternative file interface. The user
creates a data file called EASIE.DAT (described 1in the following
section) which contains the relation and template data for one or
more programs Lo he installed into EASIE. BUILQ_EASIE provides
commands that operate on EASIE.DAT and then prompts for the
desired relations and templates to be created. The BUILD_EASIE
program generates a VAX/VYMS command procedure called EASIE.COM
which includes the calls to RUNDICT and the answers to all of its
prompts. The long series of prompts in RUNDICT need not be
answered interactively and the database structure can be easily
maintained inl EASIE.DAT. Changing the database structure
requires only simple editing of EASIE.DAT and a re-execution of
BUILD EASIE and EASIE.COM. Currently BUILD_ﬁASIE supports only
PARAMETER type relations.

FASIE.COM creates the relations, templates, FORMATTER
routines (GETDATA_/PUTDATA_), the REVIEWER files, the database
schema, and the three RIM database files. The FORMATTER

routines are created in files with the template name and a .FOR

APPENDIX E

extension, REVIEWER files have the template name with a _REV
extension., The data base schema is created in SCHEMA,DAT.

BUILD EASIE also creates for each input template a command
procedure called a reviewer loader, The reviewer loader calls
the EASIE REVIEWER and loads values into the database for each
variable contained in the template. Editing the reviewer loader
command procedure supplies the values for the variables in the
template. Reviewer loaders are created in files with the input
template name and a .COM extension. These filesg provide a method
of initializing all variahles to values representative of some
baseline check case.

The data file can be sorted, by variable name, by typing the
sort command provided in BUILD_EASIE. The sorted data file is
not used by BUILD EASIE but is intended to be a reference tool.

BUILD EASIE is run at the terminal hy typing
RUN BUILD EASIE. The first prompt requires the EASIE data file
name, A carriage return will assign the default file name of
EASIE.DAT. The syntax of the three BUILD_ﬁASIE commands is then
displayed. The three commands are: (1) "R <relation named" to
build relations; (2) "7 {template name>" to build templates; and,
(3) "S" to sort EASIE.DAT. A simple carriage return will end the
execution of BUILN EASIE. EASIE.COM and any reviewer loaders
will reside 1in the current directory, EASIE.COM can now be

executed at the terminal or in batch mode,

APPENDIX E

Creating the EASIE Data File:

FASIE.DAT is a formatted file that contains the data for an
unlimited number of relations and templates. Template names must
begin with the letter 0 for output templates or the letter I for
input templates. The format of EASIE.DAT is as follows:

* Relation_name Relation description

Date User name

Variable name Data_type dimensions Units Format NDescription

template names...
Variable_name Data_type dimensions Units Format Description

template names...

* Relation_name Relation_pescription
Date User_name

Variable_name Data_type dimensions Units Format Nescription
template_names...

A1l data must appear in the proper columns for BUILD_ﬁASIE to
work properly. A11 variables listed below a relation name are
placed in that relation until a new relation name 1s declared or
the end of the file 1is reached. The template names refer to the
variable listed on the line above them. All templates in which
the variable will be included must be listed. No field in the
data file may begin with the $ character. The column and field

specifications for each piece of information is as follows:

APPENDIX E

EASIE Data Item Comments Beginning Column #
Relation name *in colum #2 must be presemt T :
Relation Description 40 characters maximum 13

Date Date relation is created (not used by EASIE) 4

User Name Name of programmer 13
Variable Name 7 characters maximum 2

Data Type Must be R, C, D, or I 10
Dimensions Up to 3 separated by commas with no 12

embedded spaces. For character type the
Tength must appear first, followed by a
space then the dimensions

Units Anything, use "+" for no units 25
Format FORTRAN output format, or "+" for default 42
Variable Description 40 characters maximum 59
Template Names Any number separated by blanks, begin

with I or 0 4

Example Run of BUILD EASIE:

The following is a sample scenerio for installing a program
into EASIE using BUILD EASIE. Terminal input and output is shown
in small type with the user inputs in bold face.

We begin by displaying our default directory which contains

the BUILD EASIE executable and the EASIE.DAT file,

$ DIR
Directory DISK:[FASIE]
BUILQ_ﬁASIE.EXE;l EASIE.DAT;1

Total of 2 files.

-4

APPENDIX E
$ TYPE EASIE.DAT

* REL 1 RELATION FOR TEST PROGRAM
01/01/88 JOHN SMITH

XXX R 1 FEET + DISTANCE TO SATELLITE
[TEMP OTEMP

YYy I 2,3,2 INCHES I5 SIZE OF PARTS
ITEMP QTEMP

77 R 5,6 METERS + COORDINATES

OTEMP ITABLE
* REL 2 RELATION NO. 2
03/03/88 JOE BLOW

DESCR C 801 + : + PROGRAM DESCRIPTION.
OTEMP ITABLE

VoL R 1 M**3 + VOLUME OF OBJECT
OTEMP

COUNT I 1 + I3 NUMBER OF PARTS
[TEMP

This EASIE.DAT file contains the data for two relations and
three templates. Relation REL 1 contains the variables XXX,
YYY, and Z1Z. Relation REL_2 contains the variables DESCR, VOL,
and COUNT. Input template ITEMP contains the variables XXX, YYy,
DESCR, and COUNT. Output template OTEMP contains the variables
XXX, YYY, ZZZ, DESCR, and VOL. Input template ITABLE contains

the variables Z77 and DESCR.,

Now we run BUILD EASIE to create the command procedures and
the sorted data file. EASIE requires that a relation be created
before a template can use it, so you must be sure to build the

relations before building the templates.

APPENDIX E

$ RUN BUILD EASIE
Builq_ﬁasie
VER, 1.0 VAX/VYMS - RIM, 5-5-87

ENTER EASIE DATA FILE NAME, <CR> = EASIE.DAT

-> EASIE.DAT
ENTER: R <RELATIUON NAME> TO BUILD RELATIONS
" T CTEMPLATE NAME> TO BUILD TEMPLATES

S TO SORT THE DATA FILE
<CR> TO END

-> R REL 1

RELATION REL 1 COMPLETED

-> R REL 2 —

RELATION REL 2 COMPLETED

-> T ITEMP

TEMPLATE ITEMP COMPLETED

-> T OTEMP

TEMPLATE QOTEMP COMPLETEN

-> S

THE SORTED DATA IS IN FILE: SORT.DAT

->

FORTRAN STOP

$ DIR

Directory DISK:[EASIE]

BUILD _EASIE.EXE;] EASIE.COM;1 EASIE.DAT;1
[TEMP.COM;1

SORT.DAT; 1

Total of 5 files.

We see that the command procedure EASIE.COM, the reviewer
loader command procedure I[TEMP,COM, and the sorted data file
SORT.DAT have been created in our current directory. Notice
that the template ITABLE is not listed in the directory because
it was not specified to be built. EASIE.DAT may contain many
relations and templates that are not referenced on any given run

of BUILD EASIE.

E-6

APPENDIX E

Since this is a new EASIE system, we must create the initial
dictionary. We run BUILDDICT.COM to create the files DICTL.DAT,
DICT2.DAT, and DICT3.DAT. The symbol RIM must also exist to

execute RIM,

$ RIM == "RUN DISK1:[RIM.RIM5]JRIM . EXE"
$ GTOAIDE:[BUILD DICTIBUILDDICT.COM

BEGIN RIM ----- VAX VERSION 5.0 UD23 87/05/14 13.18.50

RIM COMMAND MODE
ENTER "MENU" FOR MENU MODE

R>

BEGIN RIM SCHEMA COMPILATION

RIM SCHEMA COMPILATION FOR DICT IS COMPLETE
EXISTING RELATIONS AS OF 87/05/14 13.19.15

ATTRIB
PARAM
RELATION
TEMPLATE
TP.CNTRL
TP, INDEX
TP.SORT
TP.WHERE
TPC.INDX
PROGRAM
FORNAM

FORTRAN STOP
$ DIR
Directory DISK:[EASIE]

BUILN EASIE.EXE;1 DICTL.DAT;1 NICT2.DAT;1 NICT3.DAT;1
EASIE.COM;1 EASIE.DAT;1 ITEMP,.COM; 1 SORT.DAT;1

Total of B files.

E-7

APPENDIX E

Next, the command file EASIE.COM is executed with the output
written to RUNEASIE.OUT. The output can be very lengthy and is
most often deleted. But the output file can be wuseful if
problems develop when running EASIE.COM. With each subsequent
execution of EASIE.COM, the dictionary files (DICT1.DAT,
DICT2.DAT, and DICT3.DAT) should be deleted and BUILDDICT.COM
should be re-executed.

Common problems that may develop when running EASIE.COM
include: (a) no dictionary files in the current directory;
(b) relation or template files not in the current directory;
(c) relation or template already exists in the dictionary before
EASIE.COM is run attempting to create that same relation or
template; or (d) a template references a relation that has not

been created.

$ GEASIE/OUTPUT=RUNEASIE.OUT
$ DIR

Nirectory DISK:[EASIE]

BUILD EASIE.EXE;1 DATADB1,DAT;1 DATADB2.DAT;1 DATADB3.DAT;1
DICT1.DAT;1 DICT2.DAT;1 NICT3,DAT;1 EASIE.COM;1
EASIE.DAT;1 ITEMP.COM;1 ITEMP.FOR ;1 ITEMP.REV;1
OTEMP.FOR;1 OTEMP,REV;1 RUNEASIE,OUT;1 SCHEMA,DAT; 1
SORT.DAT;1

Total of 17 files.
A GETDATA routine is in ITEMP.FOR, and a PUTDATA routine is
in OTEMP,FOR, The schema file is in SCHEMA,DAT, The directory

listing shows the REVIEWER files and the three RIM database files

are present. The files EASIE.COM, RUNEASIE.OUT, and
SCHEMA.DAT are often deleted at this point.

We now look at the REVlEWER. toader ITEMP.COM. A
familiarity with the REVIEWER commands (section 7) is needed to
understand the contents of this file. The user must edit this
file and change the zeroes to any value consistent with the
variable's type. Variables of type CHARACTER must have values
enclosed in double quotes. A1l lines in the file not beginning
with M must be left in place. Any lines beginning with M can be
deleted if desired. After the proper values have heen placed in
the file, this command procedure may be executed to 1load the

database.

TYPE ITEMP.COM
DEFINE SYSSOUTPUT TRASH.DAT
REVIEW ITEMP

OO DOoOO0CDOOOOO0O

NDEASSIGN SYSSOUTPUT

$
)
$
C
M
M
M
M
M
M
MoYYY
M
M
M
M
M
M
C
M
E
S
$ DELETE TRASH.DAT;*

The SORT.DAT file is shown on the following page. This file
may be created to help track down variables in the data base and

can be very useful during progranm development and integration.

E-9

$ TYPE SORT.DAT
VARIABLE TYPE DIMENSION UNITS FORMAT DESCRIPTION

COUNT
DESCR
VOL
XXX
Yyy

177

APPENDIX E

RELATION NAME - TEMPLATE _NAMES .,

+
[TEMP
+
OTEMP ITABLE
M**3
OTEMP
FEET
ITEMP OTEMP
INCHES
ITEMP QTEMP
METERS
OTEMP ITARLE

I3
+
+

+

I5

NUMBER OF PARTS
PROGRAM DESCRIPTION.
VOLUME OF OBJECT
DISTANCE TO SATELLITE
SIZE OF PARTS
COORDINATES

APPENDIX F
INSTRUCTIONS - EASIE CODING FORM

When one computer program provides data used by another program, it may
be more effective to integrate these programs around a common information
database and automate the data exchange rather than to manually perform the
data exchange each time. These brief instructions explain which information
about a computer program variable will be needed to integrate that program
into an EASIE central database system using the utilties available for this
purpose. Since the application programmer, who is the expert on the
definition of variables needed in the database, may not perform the actual
integration, he may instead provide the needed information on this form so
that another program implementer can do the job for him.

In reference to the EASIE coding form, columns 2 through 6, 9, and 10
must be filled in by the application programner who can define for the
candidate program all input and output variables (names, descriptions, and
units) that will be shared with the central database. Obviously, all input
variables should be included, but not all variables typically written to a
formatted output file will be deemed important for the database. The program
expert can optionally £i11 in columns 1, 7, and 8 if such information is
helpful. (See explanation for these columns below.)

Once all program inputs and any needed outputs are described on this
coding form, the program implementer, who must be familiar with data already
in the database, will fill in columns 11, 12, and 13. The implementer will
determine whether the variables described already exist in the database and
where (in which database relation) new variables should be placed. All of the
information in columns 2 through 10 will then be used by the implementer for
building relations, database 1/0 subroutines, etc.

A brief description of each column follows:

1. Column 1 (optional) provides a space for cross-referencing symbols used
in program documentation with the program FORTRAN variables (colum 2)
used in the code. This is purely for the convenience of the application
programmer and is intended to aid his bookkeeping.

2. Column 2 (required) is for listing all variables that are input to the
program and all output variables selected for inclusion in the
database. [Column 9 indicates how (I-input, O-outpuyt, and B-both) the
variables are used.] Do not use local or subroutine variable names, hut
use only the variable name of the main program or the program module into
which the data will be read/written from/to the database.

3. Column 3 (required) specifies whether the variable is real (R), integer
(1), double precision (n), or character (CXXX). When it is type

character, then the length of the character variable should be stated.

4, 1f the variable is subscripted, column 4 should declare the dimensions of
the array (up to three-dimensional arrays are allowed).

5. Column 5 (required) is the description of the variable, up to 80

characters, but should be given concisely in the first 16 characters of
the field which the REVIEWER automatically displays for Parameter type

F-1

only.

APPENDIX F

If groups of input variables are somehow associated with various input

options, then some indication of this grouping should also be included in the
first 16 characters. Characters 17-80 will not be automatically displayed,
but can be examined by the Expand line # (X menu selection) option provided by
the REVIEWER,

6'

10.

11.

Column 6 (required) gives the units of the variables which can be
expressed in any understandable fashion up to 16 characters. The
REVIEWER automatically displays 10 characters for Parameter Type only,
However, a simple set of one- or two-character abbreviations will
facilitate the possible 1later development of a units conversion
utility. Examples of some abbreviations are:

FT feet N-M newton meters

FT2 feet squared NM nautical miles
LB pounds LB/DY pounds per day
DR degrees Rankine

Column 7 (optional) can be used if the program expert wishes to see a
variable displayed in a particular way when using the REVIEWER.

Column 8 (optional) will allow the specification of a reference value for
the variable. Such reference values could define a standard check case
or typical run which would thus provide a coherent set of initial values
for the database. Typically, at least the input values should be
provided with reference values. If no values are given, data will be
Tnitialized in the database to zero or blank for character data.

Column 9 (required) indicates whether a variable is an input (I) to the
program or an output (0) from the program, or it might be both (B).

Column 10 (if applicable) indicates if a variable is in a common block by
giving the common block name.

Columns 11, 12, and 13 are not filled in by the application programmer,
but are used hy the program implementer,

Column 11 is the attribute or parameter name. If the variable already
exists in the database by another name, the name as it already appears in
the datahase must be used and will be given in this column.

Column 12 contains the relation name. If the variable is new to the
database, it may be placed in an existing relation or a new relation.

Column 13 contains the assignment of the relation type (A-ATTRIBUTE or P-
PARAMETER).

Note: Please fill in the program name and contact person's name and
phone number in the spaces provided at the top of the form.

F-2

APPENDIX F

4861 ATNP

SUOHDNISe: JO; SUCHONIISU| eeg |, L WHOJ ISV 3 YSYN

1-3 8vS-0SS
3 | ("vHO 8) INVN INVN | 3 3NVA {(HVHD 9L) [HVHD 91) (¢'x'x) | 3| (4vHO 8) JOBNAS
n>_ INWN HINVIIVY %08 | s| 1nvi3a 1vr0d LSLINN (eandyiosep 10w 6G pINOYs siseseyd 9| 1SU44) NOISNIMQ M_ INVN | INIWM0a
I | NouvIR [31NaIMLLY] NovwnoD |0 AVdSIO _ISHIALOVHVHO 08) NOILAHISIC I1EVIHVA Avitv | 1| 38viHVA | 30N
€t 2z bb ot 6 8 L 9 s v € z !

3NOHd WYHOOHd WALSAS
NOSH3d LOVINOO NOLLYOddY NOIS3a
31va| s39ovd 40 39Vd 3SN ANV NOILINIZ3A I18VIHVA WHO4 DNIQOD 3Isv3

O MO OUALITY

ORIGINAL PAGE IS

F-3

APPENDIX G
VAX SYMBOL DEFINITIONS

The following VAX logical and symbol definitions are used throughout this

document :

(1) TOAIDE - A logical defining the directory location of the EASIE software.

(2) RUNDICT - A symbol used to execute the SYSTEM LIRRARY PRNCESSOR,

(3) RUNRIM - A symbol used to execute interactive RIM,

(4) LOADRIM - A logical defining the directory location of the RIM FORTRAN
library.

(5) REVIEW - A symbol used to execute the REVIEWER.

These logicals and symbols are defined at the operating system level

during installation of EASIE [5).

G-1

REFERENCES

Date, C. J.: The Systems Programming Series Volume I - AN
INTRODUCTION TO DATARASE SYSTEMS, Third Edition,
Addison-Wesley Publishing Company, February 1982.

Boeing Computer Services Company, BCS RIM - Relational
Information Management System Version 6.0 User Guide, May
1983.

Randall, D. P.; Jones, K. H.; and Rowell, L. F.: The Environ-
ment For Application Software Integration and Execution
(EASIE) Version 1.0. VOLUME IV - SYSTEM MAINTENANCE
GUIDE. NASA TM-100576, April 1988.

Schwing, Dr. J. L.; Rowell, L. F.; and Criste, R. E.: The
Environment For Application Software Integration and Execu-
tion (EASIE) Version 1.0. VOLUME III - PROGRAM EXECUTION
GUINE. NASA TM-100575, April 1988.

Rowell, L. F.; and Davis, J. S.: The Environment For Applica-
tion Software Integration and Execution (EASIE) Version 1.0
VOLUME 1 - EXECUTIVE OVERVIEW. NASA TM-100573, May 1988,

Dube, R. P.; and Smith, M. R.: "Managing Geometric
Information With A Database Management Systen", IEEE
Computer Graphics and Applications, V. 3, No. 7, pp. 57-62,
Dctober 1983,

Jacky, J. P.; and KaPet, I. J.: "A General Purpose Data Entry
Program", CACM, V. 26, No. 6, pp. 409-417, June 1983.

Structural Dynamics Research Corporation, 1-DEASTM USER'S
GUIDE, Level 3, 5201.004, March 1986.

NNASAN Report Documentation Page

N AL W E]
SLWE et e

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TM- 100574

4. Title and Subtitle 5. Report Date

The Environment For Application Software Integration and December 1988

Execution (EASIE) Version 1.0, Volume II - Program
Integration Guide

6. Performmgrbiﬁganiza(ion Code

7. Authorts) 8. Performing Organization Report No.

Kennie H. Jones, Donald P. Randall, Scott S. Stallcup,
and Lawrence F. Rowell

10. Work Unit No.

506-49-31-01

9. Performing Organization Name and Address

NASA Langley Research Center,
Hampton, VA 23665-5225

11. Contract or Grant No.

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration
Washington, DC 20546 - 0001

14. Sponsoring Agency Code

16. Supplementary Notes
Kennie H. Jones, Donald P. Randall, and Scott S. Stallcup: Computer Sciences

Corporation, Hampton, Virginia.

Lawrence F. Rowell: Langley Research Center, Hampton, Virginia.

16. Abstract

The Environment For Application Software Integration and Execution, EASIE,
provides a methodology and a set of software utility programs to ease the task of
coordinating engineering design and analysis codes. EASIE was designed to meet
the needs of conceptual design engineers that face the task of integrating many
stand-alone engineering analysis programs. Using EASIE, programs are integrated
through a relational database management system.

Volume II, describes the use of a SYSTEM LIBRARY PROCESSOR to construdt a
DATA DICTIONARY describing all relations defined in the database, and a TEMPLATE
LIBRARY, A TEMPLATE is a description of all subsets of relations (including
conditional selection criteria and sorting specifications) to be accessed as
input or output for a given application. Together, these form the SYSTEM LIBRARY
which is used to automatically produce the database schema, FORTRAN subroutines
to retrieve/store data from/to the database, and instructions to a generic
REVIEWER program providing review/modification of data for a given template.
Automation of these functions eliminates much of the tedious, error-prone work
required by the conventional approach to database integration.

17. Key Words {Suggested by Authoris}} 18. Distribution Statement -
Program Interfacing REVIEWER
Program Integration FORMATTER Unclassified - Unlimited
Database Management EASIE Subject category - 61
Data Dictionary

19. Security Classif. {of this report) 20. Security Classif. {of this page) 21, No. of pages 22. Price
Unclassified Unclassified 120 AD6

NASA FORM 1626 OCT 86

APPENDIX A

ENTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES
OR <CR> TO CREATE A LOCAL REVIEWER FILE
<CR>

ENTER TEMPLATE NAME
OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES
OR "Q" TO QuUIT

MAKGEOINKCR>

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILND A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - T0 EXIT

BRV<CR>

ENTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES
OR <CR> TO CREATE A LOCAL REVIEWER FILE
<CR>

ENTER TEMPLATE NAME
OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES
OR "Q" TO QUIT

DRAWINCCR>

ROW MODIFICATION FLAG FOR RELATION NODES
0 - FULL MODIFICATION

1 - MODIFY BUT CANNOT ADD ROWS

2 - CANNOT MODIFY ROWS

2<CR>

ROW MODIFICATION FLAG FOR RELATION FACES
0 - FULL MODIFICATION

1 - MODIFY BUT CANNOT ADD ROWS

2 - CANNOT MODIFY ROWS

2<CR>

A-13

APPENDIX A

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - T0O BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BRASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR~ TO PRINT A RELATION

X - TO EXIT

X<CR>

